Рубрика: Диагностирование автомобиля

Диагностирование автомобиля

Диагностирование автомобиля: задачи, виды, методы

Процесс определения технического состояния объекта с определенной точностью (объекты диагностирования — машина или ее составная часть), т.е. процесс, включающий измерения, анализ результатов измерений, постановку диагноза и принятие решения — диагностирование. Основная задача диагностирования в процессе технического обслуживания — определение технического состояния объекта и прогнозирование его дальнейших изменений. Это позволяет управлять техническим состоянием машин. Техническое состояние машин изменяется случайно и зависит от различных эксплуатационных факторов (почвенно-климатических условий, видов выполняемой работы, интенсивности нагрузки, квалификации механизаторов, качества обслуживания и др.). Они по-разному влияют на интенсивность изнашивания деталей машин, в связи с чем для каждой конкретной машины требуются ремонтно-обслуживающие воздействия разных объемов. Предварительное диагностирование машины и ее составных частей позволяет определить фактический объем работ по обслуживанию или ремонту. При этом решаются следующие задачи: проверка исправности и работоспособности составных частей машины поиск дефектов, в результате которых нарушилась исправность или работоспособность сбор исходных данных для прогнозирования остаточного ресурса Виды диагностирования во время эксплуатации автомобиля в процессе технического обслуживания заявочное ресурсное Диагностирование в процессе технического обслуживания увязано с системой технического обслуживания конкретной машины. Заявочное проводится по заявке автомобилиста с целью выявления дефектов. Ресурсное проводится с целью установления остаточного ресурса детали или соединения. Виды диагностирования при ремонте автомобиля предремонтное послеремонтное Диагностирование перед ремонтом, в технической литературе называемое предремонтным, проводится непосредственно в хозяйствах, использмощих технику, или на станциях технического обслуживания. Диагностирование после ремонта, называемое послеремонтным, выполняется на ремонтных предприятиях с целью оценки качества ремонта и значения восстановленного pecуpca. Методы диагностирования подразделяются на субъективные (органолептические) и объективные (инструментальные). К субъективным методам диагностирования относятся: внешний осмотр прослушивание остукиванне проверка осязанием и обонянием Внешним осмотром определяют состояние уплотнений, течь топлива, масла, электролита, повреждение наружных деталей; прослушиванием — стуки, шумы и другие звуки, отличающиеся от нормальных рабочих; остукиванием — резьбовые, заклепочные, шпоночные и сварочные соединения; осязанием — места нагрева деталей, вибрацию, биение, вязкость жидкости; обонянием — состояние муфты сцепления по характерному запаху, течь бензина и т.п. Для установления количественных изменений параметров технического состояния машины проводят объективное диагностирование, т.е. с помощью специального оборудования и приборов. Технические средства могут быть встроены в машину или подсоединены к ней. К встроенным относятся датчики, сигнальные лампочки, счетчик наработки, сигнализатор засоренности фильтра и др. К подсоединяемым — стенды, приборы, приспособления и т.п. Методы диагностирования по характеру измерения параметров Прямые методы основаны на измерении структурных параметров технического состояния непосредственно прямым измерением (размер детали, зазор в подшипниках, прогиб ремня привода вентилятора и т.д.) Косвенные методы основаны на определении структурных параметров состояния составных частей по косвенным (диагностическим) параметрам при установке диагностического устройства без разборки машины. Этими методами определяются физические величины, характеризующие техническое состояние механизмов и систем машины: давление масла, расход газа (топлива, масла), параметры вибрации, ускорение при разгоне двигателя и др. Техническое диагностирование при эксплуатации машин приурочивается к соответствующему виду технического обслуживания. Это позволяет снизить трудоемкость выполнения операций технического обслуживания, повысить их эффективность и обеспечить безотказность работы объекта до следующего контроля и обслуживания. Результаты диагностирования заносят в специальную карту, в которой год и дату поступления техники считают от последнего капитального ремонта (или от начала эксплуатации для новых автомобилей). Наработку от начала эксплуатации ставят в том случае, если автомобиль не подвергался капитальному ремонту....

Методы диагностирования

Методы диагностирования

Методы диагностирования автотранспортных средств подразделяются на субъективные и объективные. В основе субъективных методов лежат способы определения технического состояния автомобиля по выходным параметрам динамических процессов. Однако получение, анализ информации, а также принятие решения о техническом состоянии производятся с помощью органов чувств человека, что, естественно, имеет достаточно высокую погрешность. Субъективные методы Наибольшее распространение получили следующие субъективные методы: визуальный прослушивание работы механизма ощупывание механизма заключение о техническом состоянии на основании логического мышления Визуальный метод дает возможность обнаружить, например, следующие неисправности: нарушение уплотнений, трещины, дефекты трубопроводов, соединительных шлангов и т.п. — по течи топлива, масла, экс­плуатационных жидкостей неполное сгорание топлива — по дымлению из выхлопной трубы подтекание форсунок — по повышению уровня масла в под­доне картера двигателя и т.д. Прослушивание работы механизма позволяет обнаружить следующие неисправности: увеличенный зазор между клапанами и коромыслами ме­ханизма газораспределения — по стукам в зоне клапанного ме­ханизма повышенный износ шатунных и коренных подшипников — по стукам в соответствующих зонах кривошипно-шатунного ме­ханизма при изменении частоты вращения коленчатого вала чрезмерное опережение или запаздывание впрыска топли­ва — по характеру звука выхлопа (при раннем впрыске — «жесткая работа», при позднем — «мягкая») неисправности сцепления автомобиля — по шуму и стукам при переключении передачи и др. Методом ощупывания механизма можно определить такие неисправности: ослабление креплений — по относительному перемещению деталей неисправности отдельных трущихся механизмов и деталей — по чрезмерному их нагреву неисправности рулевого механизма — по толчкам на руле­вом колесе и др. На основании логического мышления можно сделать заклю­чение о следующих неисправностях: топливной аппаратуры — затруднен пуск двигателя системы охлаждения — двигатель перегревается и др. Объективные методы Объективные методы основываются на измерении и анализе информации о действительном техническом состоянии элементов автомобиля с помощью контрольно-диагностических средств и путем принятия решения по специально разработанным алгоритмам диагностирования. Применение тех или иных методов существенно зависит от целей, которые решаются в процессе технической подготовки автомобилей. Однако в связи с усложнением конструкции автомобиля, повышенными требованиями к эксплуатационным качествам, интенсивностью использования объективные методы диагностирования находят все большее применение. Методы диагностирования автомобилей, их агрегатов и узлов характеризуются способом измерения и физической сущностью диагностических параметров, наиболее приемлемых для исполь­зования в зависимости от задачи диагностирования и глубины постановки диагноза. В настоящее время принято выделять три основные группы методов, классифицированных по виду диагностических параметров. Методы I группы базируются в основном на имитации скоростных и нагрузочных режимов работы автомобиля и определении при заданных условиях выходных параметров. Для этих целей используются стенды с беговыми барабанами или параметры определяются непосредственно в процессе работы автомобиля на линии. Методы диагностирования по параметрам экс­плуатационных свойств дают общую информацию о техническом состоянии автомобиля. Они позволяют оценить основные экс­плуатационные качества автомобиля: тормозные мощностные топливную экономичность устойчивость и управляемость на­дежность удобство пользования и т.д. Методы II группы базируются на объективной оценке гео­метрических параметров в статике и основаны на измерении значения этих параметров или зазоров, определяющих взаим­ное расположение деталей и механизмов. Проводят такое диаг­ностирование в случае, когда измерить эти параметры можно без разборки сопряжений трущихся деталей. Структурными па­раметрами могут быть зазоры в подшипниковых узлах, клапан­ном механизме, кривошипно-шатунной и поршневой группах двигателя, шкворневом соединении колесного узла, рулевом управлении, углы установки передних колес и др. Диагностиро­вание по структурным параметрам производится...

Данные контроля тормозной системы автомобиля

Виды стендов и методы испытания тормозных систем

Согласно действующим стандартам применяют два основных метода диагностирования тормозных систем — дорожный и стендовый. Для них установлены следующие контролируемые параметры: при проведении дорожных испытаний — тормозной путь; установившееся замедление; устойчивость при торможении; время срабатывания тормозной системы; уклон дороги, на котором должно неподвижно удерживаться транспортное средство при проведении стендовых испытаний — общая удельная тормозная сила; коэффициент неравномерности (относительная неравномерность) тормозных сил колес оси, а для автопоезда еще дополнительно коэффициент совместимости звеньев автопоезда и асинхронность времени срабатывания тормозного привода Существует несколько видов стендов и приборов, использующих различные методы и способы измерения тормозных качеств: статические силовые инерционные платформенные инерционные роликовые силовые роликовые стенды приборы для измерения замедления автомобиля при дорожных испытаниях Статические силовые стенды Статические силовые стенды для диагностирования тормозов автомобиля представляют собой роликовые или платформенные устройства, предназначенные для проворачивания «срыва» заторможенного колеса и измерения прикладываемой при этом силы. Такие стенды могут иметь гидравлический, пневматический или механический привод. Измерение тормозной силы возможно при вывешенном колесе или при его опоре на гладкие беговые барабаны. Недостатком статического способа диагностирования тормозов является неточность результатов, вследствие чего не воспроизводятся условия реального динамического процесса торможения. Инерционные платформенные стенды Принцип действия инерционного платформенного стенда основан на измерении сил инерции (от поступательно и вращательно движущихся масс), возникающих при торможении автомобиля и приложенных в местах контакта колес с динамометрическими платформами. Такие стенды иногда используются на предприятиях автотехобслуживания для входного контроля тормозных систем или экспресс-диагностирования транспортных средств. Инерционные роликовые стенды Инерционные роликовые стенды имеют ролики, которые могут иметь привод от электродвигателя или от двигателя автомобиля. В последнем случае ведущие колеса автомобиля приводят во вращение ролики стенда, а от них с помощью механической передачи — и передние (ведомые) колеса. После установки автомобиля на инерционный стенд линейную скорость колес доводят до 50…70 км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт. При этом в местах контакта колес с роликами (лентами) стенда возникают силы инерции, противодействующие тормозным силам. Через некоторое время вращение барабанов стенда и колес автомобиля прекращается. Пути, пройденные каждым колесом автомобиля за это время (или угловое замедление барабана), будут эквивалентны тормозным путям и тормозным силам. Тормозной путь определяют по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление — угловым деселерометром. Метод, реализуемый инерционным роликовым стендом, создает условия торможения автомобиля, максимально приближенные к реальным. Но в силу высокой стоимости стенда, недостаточной безопасности, трудоемкости и больших затрат времени, необходимого для диагностирования, стенды такого типа нерационально использовать при проведении диагностирования на автопредприятиях и при гостехосмотре. Силовые роликовые стенды Силовые роликовые стенды с использованием сил сцепления колеса с роликом позволяют измерять тормозные силы в процессе его вращения со скоростью 2.10 км/ч. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по реактивному моменту, возникающему на статоре мотор-редуктра стенда при торможении колес. Роликовые тормозные стенды позволяют получать достаточно точные результаты проверки тормозных систем. При каждом повторении испытания они способны создать условия (прежде всего скорость вращения колес), абсолютно одинаковые с предыдущими, что обеспечивается точным заданием начальной скорости торможения внешним приводом. Кроме того, при испытании на силовых роликовых тормозных стендах предусмотрено измерение так называемой «овальности» — оценка неравномерности...

Общий вид люфтомера К-524

Люфтомеры рулевого управления. Прибор для измерения суммарного люфта

При проведении инструментального контроля используются механические и электронные люфтомеры. Механический люфтомер К-524 Механический люфтомер К-524 состоит из: верхнего и нижнего раздвижных кронштейнов, приставляемых к ободу рулевого колеса упорами передвижной каретки, стягивающей направляющие стержни кронштейнов с помощью зажима угломерной шкалы, устанавливаемой на оси зажима и имеющей возможность поворота рукой и самоторможения (при снятии усилия) за счет фрикционной резиновой шайбы резиновой нити, натягиваемой с помощью присоса от зажима к ветровому стеклу автомобиля и играющей роль «указательной стрелки» угломерной шкалы нагрузочного устройства, представляющего собой пружинный динамометр двустороннего действия Рис. Общий вид люфтомера К-524 (Россия): 1 — угломерная шкала; 2 — верхний кронштейн; 3 — направляющие стержни; 4 — стопорный винт; 5 — кронштейн динамометра; 6 — установочная цапфа; 7 — нижний кронштейн; 8 — пружинный динамометр; 9 — прижим; 10 — упоры кронштейнов; 11 — фрикционная шайба; 12 — зажим каретки; 13 — резиновая нить; 14 — присос; 15 — поджимное кольцо; 16 — каретка; 17 — вороток прижима; а, Ь — вылеты направляющих стержней Каретка с осью поворота угломерной шкалы выставляется в центр рулевого колеса путем уравнивания вылетов (а = b) стержней 3 относительно каретки. Этим обеспечивается неподвижность указательной нити-«стрелки» при повороте рулевого колеса и правильность измерения люфта. Динамометр устанавливается на нижнем кронштейне и закрепляется стопорным винтом в таком положении, при котором при установке люфтомера на ободе рулевого колеса приложенное к нагрузочному устройству усилие пришлось бы на середину сечения обода. Метод измерения суммарного люфта рулевого управления, выполняемого одним оператором, заключается в выявлении угла поворота рулевого колеса по угловой шкале люфтомера между двумя фиксированными положениями, которые определяются приложением к нагрузочному устройству поочередно в обоих направлениях одинаковых усилий, регламентируемых в зависимости от собственной массы оси автомобиля, приходящейся на управляемые колеса. Таблица. Зависимость усилия, прилагаемого к ободу рулевого колеса, от массы автомобиля, приходящейся на управляемые колеса Масса автомобиля, приходящаяся на управляемые колеса, т Усилие нагрузочного устройства, Н (кгс) До 1,6 7,35(0,75) От 1,6 до 3,86 9,80(1,00) Свыше 3,86 12,30(1,25) При повороте управляемого колеса в случае приложения регламентируемого усилия на него фиксируемые положения должны соответствовать моменту начала поворота колеса, который определяется вторым оператором визуально или с помощью дополнительных средств (например, индикатора). Пружинный динамометр люфтометра К-524 тарируется на заводе-изготовителе по совпадению риски 11 указателя с кромкой 6 крышки при нагрузке (1,00 + 0,08) кгс, после чего указатель пломбируется красной краской. Рис. Пружинный динамометр люфтомера К-524 (вид в разрезе): 1 — корпус; 2 — пружина; 3 — чашка пружины; 4 — контргайка; 5 — крышка; 6 — кромка крышки; 7 — головка; 8 — шпилька; 9 — указатель; 10, 11, 12 — риски регламентируемых усилий 1,25; 1,0 и 0,75 кг соответственно Электронный люфтомер ИСЛ-401 Электронный люфтомер ИСЛ-401 предназначен для измерения суммарного люфта рулевого управления легковых и грузовых автомобилей, автобусов методом прямого измерения угла поворота рулевого колеса относительно управляемых колес. Основным отличием люфтомера ИСЛ-401 от К-524 является наличие датчика, фиксирующего начало поворота колеса, а не динамометра, измеряющего усилие поворота. Рис. Электронный люфтомер ИСЛ-401: а — основной блок; б — датчик момента трогания колеса; 1 — кнопка включения-выключения основного блока; 2 — дисплей показаний основного блока; 3 — кнопка сброса-повтора...

Мотор-тестер

Диагностирование электронных систем управления

Виды диагностических систем В конструкциях автомобилей все более широкое применение находят электронные системы управления. Проведение диагностирования современного автомобиля без использования средств для анализа работы электронных систем управления может дать недостаточно полную информацию о его техническом состоянии. Диагностические средства для определения технического состояния электронных систем управления можно подразделить на три категории: стационарные (стендовые) диагностические системы бортовое диагностическое программное обеспечение, которое позволяет индицировать неисправности соответствующими кодами бортовое диагностическое программное обеспечение, для доступа к которому требуется специальное дополнительное считывающее устройство Стендовые диагностические системы Эти системы не подключаются к бортовым электронным блокам управления и, таким образом, не зависят от бортовой диагностической системы автомобиля. Они обычно диагностируют отдельные механизмы двигателя и системы зажигания, поэтому их часто называют мотор-тестерами. Основными элементами мотор-тестера являются датчики, а также блок обработки и индикации результатов измерений воспринимаемых сигналов. Датчики и регистрирующие приборы соединены с кабелями с помощью штекеров и зажимов. Рис. Мотор-тестер Мотор-тестеры выполняются на базе компьютеров, имеют клавиатуру, дисплей, дисководы, привод CD-ROM. В комплект обычно входит набор соединительных проводов и кабелей, стробоскоп, а в отдельных случаях — и газоанализатор отработавших газов. Информация вводится в компьютер с помощью соответствующего анализатора, в котором размещены аналогово-цифровые преобразователи, компараторы, усилители и другие устройства предварительной обработки сигналов. Анализатор подключается к необходимым элементам на автомобиле с помощью комплекта кабелей, который представляет собой набор проводов, подключаемых к отрицательной, положительной клеммам аккумулятора и катушке зажигания, провода высокого напряжения к катушке зажигания и к свече первого цилиндра, а кроме того, бесконтактный датчик тока на шине зарядки аккумулятора, датчик температуры масла в двигателе (вставляется вместо щупа), датчик разрежения во впускном коллекторе и т.п. Основная часть мотор-тестера — осциллоскоп, на экране которого появляются различные осциллограммы, отражающие режим работы и техническое состояние проверяемых деталей и приборов системы зажигания. Оценка сигнала, появляющегося на экране осциллоскопа, основывается на анализе изменений (при наличии неисправностей) характера электрических процессов, протекающих в цепях низкого и высокого напряжения. По отдельным частям изображения можно судить также о работе некоторых элементов систем питания и зажигания, а характер изменения позволяет выявлять причины неисправностей. Компьютер мотор-тестера обрабатывает информацию, полученную от двигателя, и представляет результаты на дисплее или в виде распечатки на принтере. С мотор-тестером может поставляться комплект лазерных компакт-дисков с технической информацией о различных моделях автомобилей, а также с инструкциями оператору о порядке подключения мотор-тестера к автомобилю и о последовательности проведения контрольных операций. Перед проведением диагностирования вводят модель автомобиля, тип двигателя, трансмиссии, системы зажигания, впрыска топлива и другие параметры, характеризующие объект диагностирования. Мотор-тестеры способны диагностировать большинство автомобильных систем, в том числе системы пуска, электроснабжения, зажигания, оценивать компрессию в цилиндрах, измерять параметры системы питания. Современные мотор-тестеры могут выдавать информацию о состоянии системы зажигания в виде цифр или осциллограммы процесса. Примером служит мотор-тестер М3-2 (Беларусь), с помощью которого можно определять состояние двигателя (по развиваемой мощности, балансу мощности по цилиндрам, относительной компрессии), стартера, генератора, реле-регулятора, аккумулятора, прерывателя-распределителя, электропроводов, свечей зажигания, лямбда-датчика, форсунок системы впрыска бензиновых двигателей, дизельной топливной аппаратуры, измерять с помощью стробоскопа углы опережения зажигания для бензиновых двигателей и впрыска для дизельных двигателей. По мере усложнения автомобильной электроники расширяются и функциональные возможности стационарных систем, поскольку необходимо диагностировать не только управление двигателем, но и тормозные...

Сравнительная схема информативности диагностических параметров

Диагностические параметры и нормативы

Чтобы определить, в каком состоянии находится автомобиль или его элемент, необходимо знать параметры его технического состояния, заданные нормативно-технической документацией предприятия-изготовителя. Параметры технического состояния (структурными параметрами) — это физические величины (выраженные в миллиметрах, градусах и т.п.), определяющие связь и взаимодействие элементов автомобиля и его функционирование в целом. Например, параметрами технического состояния сопряжения поршень—цилиндр двигателя могут быть размеры сопряженных деталей поршней и цилиндров, которые определяют зазор между ними, овальность и т.п. В процессе эксплуатации параметры технического состояния изменяются от номинального до предельного значения под влиянием различных конструктивно-технологических и эксплуатационных факторов. Предельные значения структурных параметров обусловлены вероятностью отказов и неисправностей автомобиля и являются в основном значениями технико-экономического характера. Возможность непосредственного измерения в процессе эксплуатации структурных параметров (износов, зазоров) сопряжений механизмов автомобиля без их разборки весьма ограничена. Поэтому при диагностировании пользуются косвенными признаками, отражающими техническое состояние автомобиля. Эти признаки называются диагностическими параметрами и представляют собой пригодные для измерения физические величины, связанные с параметрами технического состояния автомобиля и несущие информацию о его состоянии. Диагностический параметр — это мера проявления технического состояния автомобиля и его элементов по косвенным признакам, определяемая количественными значениями. Диагностическими параметрами могут быть параметры рабочих процессов (мощность, тормозной путь, расход топлива и др.), сопутствующих процессов (вибрация, шум и т.п.) и геометрические величины (зазор, люфт, свободный ход, биение и др.). Для обеспечения надлежащей достоверности и экономичности диагностирования диагностические параметры должны обладать чувствительностью, однозначностью, стабильностью, информативностью. Чувствительность диагностического параметра — это отношение его приращения к соответствующему изменению структурного параметра. Чем больше значение этой величины, тем чувствительнее диагностический параметр к изменению структурного параметра. Однозначность диагностического параметра определяется монотонно возвращающей или убывающей зависимостью его от структурного параметра в диапазоне от начального до предельного изменения структурного параметра. Стабильность диагностического параметра определяется дисперсией его значения при многократных измерениях в неизменных условиях при одном и том же значении структурного параметра. Нестабильность диагностического параметра снижает достоверность оценки технического состояния механизма, что в некоторых случаях заставляет отказаться от удобных методов диагностирования. Так, например, именно это является одной из основных причин, по которой площадочные тормозные стенды, несмотря на некоторые их преимущества, не нашли широкого применения на практике. Для определения истинного состояния тормозной системы на таких стендах необходимо проводить целую серию измерений, что представляет определенную трудность. Информативность диагностического параметра является главным критерием, положенным в основу определения возможности применения параметра для целей диагностирования. Она характеризует достоверность диагноза, получаемого в результате измерения значений параметра. Рис. Сравнительная схема информативности диагностических параметров: а — информативного (П); б — малоинформативного (П’); в — неинформативного (П»); f1, f2 — функции распределения параметров соответственно исправных и неисправных объектов Диагностические параметры механизма, как и структурные, являются переменными случайными величинами и имеют соответствующие номинальные и предельные значения. С увеличением пробега автомобиля диагностические параметры могут либо увеличиваться (вибрации и др.), либо уменьшаться (давление масла и т.д.). Существующая связь между диагностическими и структурными параметрами позволяет без разборки автомобиля и его элементов количественно оценить их техническое состояние. Диагностические нормативы — это количественная оценка технического состояния диагностируемой системы. К ним относятся: начальное значение диагностического параметра его предельное значение, при достижении которого возникает существенная вероятность появления отказа упреждающее или допустимое значение при заданной периодичности диагностирования Определение технического состояния...

Установка прибора для проверки света фар

Порядок проверки технического состояния световых приборов

Для проведения проверки технического состояния фар головного освещения транспортного средства с помощью соответствующего прибора следует выполнить ряд подготовительных операций в указанной последовательности: Установить проверяемое транспортное средство на рабочую площадку всеми колесами так, чтобы до передней границы площадки оставалось расстояние не менее 1 м, а до боковых границ — не менее 0,5 м. (Под рабочей площадкой понимается ровная горизонтальная площадка с твердым покрытием, имеющая отклонение от горизонтального положения не более 3 мм на 1 м и метрологически поверенная по этому показателю.) Проверить давление воздуха в шинах и при необходимости довести его до нормы. Проверить целостность фар и надежность их фиксации. Для транспортных средств, оборудованных регулируемой подвеской, завести двигатель и установить подвеску в транспортное положение всех осей, после чего заглушить двигатель. Проверить работоспособность корректирующих устройств света фар. После проверки установить корректор в соответствующее загрузке положение. На транспортных средствах, оборудованных регулируемой подвеской всех осей, установить корректор в нулевое положение независимо от загруженности транспортного средства. Для порожних транспортных средств категории М1 обеспечить загрузку транспортного средства массой (70 ± 20) кг (человек или груз) на заднем сиденье. Определить первоначальный наклон светотеневой границы ближнего света фар по обозначению завода-изготовителя. Определить тип фар по обозначениям, нанесенным на их рассеиватели. Расположить прибор так, чтобы расстояние от рассеивателя фары до линзы прибора было равно расстоянию, предусмотренному инструкцией по эксплуатации прибора. Разместить оптическую камеру по высоте таким образом, чтобы середина фары по высоте находилась на одном уровне с серединой по высоте положения линзы. Сориентировать оптическую камеру прибора так, чтобы продольная ось камеры располагалась в одной плоскости с исходной осью фары. Для этого следует использовать ориентирующее приспособление прибора, как показано на рисунке. Рис. Установка прибора для проверки света фар: 1 — ориентирующее приспособление; 2 — поворотный штатив; 3 — оптическая камера; 4 — тележка для перемещения по полу Рис. Лимб рукоятки для установки положения измерительного экрана: 1 — рукоятка; 2 — шкала; 3 — указатель Далее проверяется свет фар: Включить ближний свет фар. С помощью рукоятки с нанесенной шкалой установить измерительный экран прибора в положение, при котором горизонтальная линия на нем совпадает с левой частью светотеневой границы фары. Определить абсолютное значение указанного снижения по шкале. Проверить характер расположения светового пятна на экране. Световое пятно должно иметь выраженную светотеневую границу в соответствии с нанесенной на экран разметкой. Точка пересечения правой и левой частей светотеневой границы фары должна находиться на средней вертикальной линии Н-Н экрана. При наличии на транспортном средстве фар, оснащенных газоразрядными источниками света, проверить исправность автоматического корректора фар путем наблюдения за неизменностью положения светотеневой границы при покачивании подрессоренной части транспортного средства путем периодического приложения усилий к кузову в вертикальной плоскости, а также омывателя фар путем приведения его в действие. Проверить уровень положения левой части светотеневой границы, который должен соответствовать значению, указанному в условном обозначении, а при его отсутствии — указанному в таблице. К полученному значению уровня снижения прибавить 150 мм (1,5 %) и измерить в этом положении силу света фары. Сравнить полученное значение с нормативным для освещенной части экрана. Положение фотоприемника на измерительном экране должно соответствовать указанному на рисунке. Вычесть из абсолютного значения снижения светотеневой границы 100 мм (1,0 %) и...

Опорно воспринимающее устройство

Тормозные стенды. Принцип действия. Проверка тормозных систем

При въезде автомобиля на тормозной стенд производится измерение веса оси, если имеется взвешивающее устройство. При отсутствии взвешивающего устройства вес оси может вводиться с другого стенда, например для проверки амортизаторов. Когда автомобиль устанавливается на стенд, то следящие ролики нажимаются вниз и передают сигнал о готовности стенда к измерению. Для включения тормозного стенда должны быть нажаты оба ролика. В дальнейшем следящие ролики служат для определения проскальзывания шины относительно роликов и дают сигнал на отключение приводных мотор-редукторов при проскальзывании. Принцип действия стендов основан на преобразовании тензорезисторными датчиками реактивных моментов тормозных сил, возникающих при торможении колес автомобиля, а также силы тяжести оси автомобиля, действующей на роликовые агрегаты, в аналоговые электрические сигналы. Во время торможения в зависимости от величины тормозной силы на балансирно подвешенном мотор-редукторе возникает реактивный момент. Корпус мотор-редуктора при этом поворачивается на угол, пропорциональный тормозной силе. Реактивный момент, возникающий при вращении мотор-редуктора, воспринимается тензометрическими датчиками 3 и 8, один конец которых закреплен на лапах мотор-редукторов, а второй — на раме 6. Рис. Опорно воспринимающее устройство: 1, 5, 7, 10 — ролики; 2, 9 — мотор редукторы; 3, 8 — тензометрические датчики; 4, 11 — следящие ролики; 6 — рама; 12 — датчики веса При проскальзывании шины относительно ролика стенды автоматически отключают привод роликов тормозного стенда, что предохраняет шины от повреждений. При проверке обычно тормозят до тех пор, пока по меньшей мере один следящий ролик не отметит превышение нормативной величины проскальзывания и, таким образом, не отключит приводные двигатели. При достижении одним колесом установленной границы проскальзывания оба ролика отключаются. Максимальное измеренное значение записывается как максимальная тормозная сила. Проскальзывание колеса зависит от состояния роликов и их влажности. Коэффициент трения стальных роликов составляет: сухих — около 0,9 мокрых — 0,7 базальтовых сухих — 0,9 базальтовых мокрых — 0,8 Однако максимальное значение тормозной силы может фиксироваться как при проскальзывании колеса, так и без проскальзывания. Если проскальзывание не будет достигнуто, то тормозная сила, полученная при нормативном усилии нажатия на педаль, принимается за максимальную тормозную силу. Для получения в каждый момент времени значений соотношения давлений в тормозном приводе (пневматическом или гидравлическом) к автомобилю могут быть присоединены дистанционные датчики давления. Стенд измеряет также усилие на прокручивание незаторможенного колеса. Этот параметр характеризует состояние подшипников ступиц колес, зазоров между колодками и барабаном (диском), сопротивление в трансмиссии. Проверка усилия на тормозной педали позволяет определять не только нормируемые значения, но и работоспособность вакуумного усилителя тормозной системы и сравнивать режимы работы колесных тормозных механизмов. Сигналы от тензорезисторных датчиков поступают в компьютер, где они автоматически обрабатываются по специальной программе. По результатам измерений тормозных сил и массы автомобиля вычисляют осевую и общую удельные тормозные силы и неравномерность тормозных сил. Результаты измерений и вычисленные значения представляются в виде графических и цифровых результатов на мониторе и распечатываются в виде протокола измерений печатающим устройством. В процессе диагностирования может измеряться овальность тормозных барабанов (неравномерность толщины тормозных дисков). Этот параметр определяется как разность между максимальным и минимальным тормозными усилиями за один оборот колеса при постоянном положении педали тормоза. Этот параметр не является контролируемым при гостехосмотре, однако он может использоваться в качестве диагностического при поиске неисправностей. С помощью этого измерения можно, например, определить отклонение...

Диагностирование кривошипно-шатунного механизма двигателя

Диагностирование кривошипно-шатунного механизма двигателя

Предварительная оценка состояния сопряжения КШМ по давлению масла и стукам Предварительную оценку состояния сопряжений КШМ можно получить по величине давлении масла в главной магистрали и характеру стуков в определенных зонах двигателя. Давление масла проверяют устройством КИ-5472 ГОСНИТИ, которое состоит из манометра, соединительного рукава с ниппелем и накидной гайкой, демпфера для сглаживания пульсации масла при измерении давления и сменных штуцеров. Чтобы измерить давление в главной магистрали дизеля, устройство подключают к корпусу масляного фильтра, отсоединив трубку штатного манометра. Для проверки давления выполните следующие операции: подсоедините к корпусу масляного фильтра КИ-5472 запустите и прогрейте до нормального теплового состояния двигатель зафиксируйте давление масла в магистрали при номинальной и минимально устойчивой частоте вращения коленчатого вала на холостом ходу Стуки в сопряжениях КШМ прослушивают при неработающем двигателе электронным автостетоскопом ТУ 14 МО.082.017, попеременно создавая в надпоршневом пространстве разрежение и давление с помощью компрессорно-вакуумной установки КИ-4912 ГОСНИТИ или КИ-13907 ГОСНИТИ. Прослушивают стуки в сопряжениях бобышки поршня — поршневой палец, поршневой палец — втулка верхней головки шатуна, шейка коленчатого вала — шатунный механизм. Если давление масла ниже допустимых значений, при наличии стуков в сопряжениях коленчатого вала проверяют зазоры в указанных сопряжениях. При пониженном давлении масла и отсутствии стуков проверяют регулировку сливного клапана смазочной системы. Если это не даст положительных результатов, проверяют подачу масла насосом и состояние редукционного клапана смазочной системы на стенде. Определение состояния КШМ по зазорам в его сопряжениях Заключение о состоянии КШМ можно сделать по величине зазоров в его сопряжениях. Суммарный зазор в верхней головке шатуна и шатунном подшипнике замеряют устройством КИ-11140 ГОСНИТИ. Для измерения зазоров необходимо: установить поршень проверяемого цилиндра в ВМТ на такте сжатия и застопорить коленчатый вал закрепить устройство в головке цилиндров вместо форсунки, ослабив стопорный винт и приподняв направляющую с индикатором и штоком вверх опустить направляющую до упора штока в днище поршня (натягом) и зафиксировать ее винтом присоединить распределительный трубопровод компрессорно-вакуумной установки к штуцеру пневматического приемника включить установку и довести давление и разрежение в ее ресиверах соответственно до 0,06—0,1 МПа и 0,06—0,07 МПа выполнить два-три цикла подачи в надпоршневое пространство давления и разрежения переключением распределительного крана до получения стабильных показаний индикатора соединить краном ресивер сжатого воздуха с надпоршневым пространством и настроить индикатор на нуль плавно соединить ресивер разреженного воздуха с надпоршневым пространством и зафиксировать по индикатору сначала зазор в соединении поршневой палец — верхняя головка шатуна, затем суммарный зазор в верхней головке шатуна и шатунном подшипнике Зазоры в КШМ измеряют 3-кратно и принимают среднее значение. Если зазоры хотя бы у одного шатуна превышают допустимые значения, двигатель подлежит ремонту.

Портативный сканер

Сканеры для диагностики автомобилей

Сканер (сканирующий прибор) — это компьютерный тестер, служащий для диагностирования различных электронных систем управления посредством считывания цифровой информации с диагностического разъема автомобиля. Обычно сканер подключается к компьютеру через последовательный порт для передачи данных. Для небольших СТО могут использоваться портативные сканеры с индивидуальным встроенным дисплеем для просмотра проверяемых данных или осциллограмм. Рис. Портативный сканер Принципиальным отличием сканера от мотортестера является то, что сканер сам ничего не измеряет (датчиков в своем составе не имеет), а только считывает результаты измерений и их анализа, выполненного системой управления каким-либо агрегатом автомобиля; мотортестер — прибор для измерения и отображения аналоговых параметров в различных электрических цепях автомобиля, для чего используются внешние, подключаемые к цепям датчики, а также для выполнения тестов механических систем двигателя. Причем, сканер получает информацию не в аналоговой форме, а на языке электронного устройства в виде цифрового кода. Поскольку сканер не измерительный прибор, а всего лишь дешифратор, его способности ограничены возможностями программы, заложенной в электронный блок управления. Полнота диагностической информации, получаемой при помощи сканера, в первую очередь, зависит от разработчика системы управления и только во вторую — от производителя сканера. Сканеры различаются своими функциональными возможностями и спектром тестируемых автомобилей. Сканер проверяет входные и выходные параметры электрических цепей и информирует оператора об их величине. Таким образом, он всего лишь фиксирует наличие или отсутствие неисправностей в каком-либо узле, но не позволяет определять их причины, которых может быть много для одних и тех же значений контролируемых параметров. С программной точки зрения особенности тестируемого автомобиля в сканере учитываются при помощи дооснащения базового устройства соответствующим программным продуктом, отражающим специфику управляющей электроники автомобиля данной марки. Дополнительная программа может поставляться в виде перепрограммируемой карты внешней памяти (PCMCIA-карта), которые вставляются в сканер, что позволяет обновлять версии программы при помощи персонального компьютера, в том числе через Интернет. Обновление программного обеспечения актуально потому, что ни один производитель сканеров не выпускает на рынок программный продукт «на все времена», так как это просто невозможно. Универсальность сканера определяется глубиной охвата, тем, насколько полон список электронных систем, которые сканер может тестировать на автомобиле данной марки. Специфика автомобилей разных производителей заключается не только в использовании разных протоколов обмена, но и диагностических разъемов различной конфигурации. Чтобы учесть эту особенность, универсальные сканеры снабжаются комплектом кабелей-адаптеров для подключения к системе бортовой диагностики. Стремясь придать сканерам большую универсальность, отдельные разработчики снабжают свои сканер дополнительными функциями. Так, некоторые модели приборов имеют встроенный мультиметр, двух или четырех канальный осциллограф, блок проверки шин CAN и др. Основными возможностями сканеров являются следующие: диагностирование блоков управления: вывод из памяти данных о неисправностях отображение фактических значений измеряемых параметров управление исполнительными механизмами обеспечение вывода графической информации с фактическими значениями во время тестирования (кривые зависимости от времени) использование других специальных возможностей блока управления таких, как, например, сброс интервала обслуживания отображение расположения мест установки и распределения контактов диагностических разъемов Использование программного обеспечения: проверка компонентов, схемы электрических соединений, положения установки компонентов нормативные данные по проверяемым параметрам инструкции по сборке/установке, информация по техническому обслуживанию поиск и заказ неисправного оборудования Использование мультиметра: проведение измерений напряжения проведение измерений сопротивления проведение измерений силы тока Использование осциллографа для регистрации значений, полученных при тестировании Наиболее функционально совершенным дилерским сканерам часто...

Проверка дымности автомобиля

Измерение дымности отработавших газов дизельных двигателей

Для автомобилей с дизельными двигателями, находящимися в эксплуатации, действует ГОСТ 21393-75 «Автомобили с дизелями. Дымность отработавших газов. Нормы и методы измерений. Требования безопасности» с изменением №2. Стандарт распространяется на автомобили и автобусы с дизельными двигателями. Основным нормируемым параметром дымности является натуральный показатель ослабления светового потока K м-1, вспомогательным – коэффициент ослабления светового потока N %. Натуральный показатель ослабления светового потока K, м-1 – величина, обратная толщине слоя отработавших газов, проходя через который поток излучения от источника света ослабляется в «е» раз (е=2,178 – основание натуральных логарифмов). Коэффициент ослабления светового потока N, % представляет собой степень ослабления светового потока вследствие поглощения и рассеивания света отработавшими газами при прохождении ими рабочей трубы дымомера. Пересчет значений К в N приведены в таблице. Пересчет значений натурального показателя ослабления светового потока в коэффициент ослабления светового потока (для N, приведенного к шкале дымомера с эффективной базой 0,43 м). К, м-1 0,0 0,1 0,2 0,3 0,4 0,5 0,7 0,9 1,2 N, % 0,0 4 8 11 15 20 25 31 40 К, м-1 1,4 1,6 1,9 2,5 2,8 3,5 4,0 4,6 ∞ N, % 45 50 56 66 70 78 81 86 100 Показатели ослабления светового потока K м-1 и коэффициент ослабления светового потока N %. определяются на холостом ходу: на режиме свободного ускорения, а также при максимальной частоте вращения. Измере­ния производятся на неподвижно стоящем автомобиле с исправной системой выпуска отработавших газов и после подготовки дымомера к работе. Установить оптический детектор на выхлопную трубу проверяемого автомобиля (ДО-1) или подключить гибкий шланг измерительного зонда к основному прибору (MDO2-LON) и закрепить зонд на выхлопной трубе. Подключить датчик температуры масла (MDO2-LON). Подключить датчик частоты вращения коленчатого вала к двигателю. Запустить двигатель и дождаться его прогрева до рабочей температуры. Установить минимальную частоту вращения вала двигателя. Проведение измерений в режиме свободных ускорений Перед началом измерений должна быть выполнена серия из шести повторений цикла изменения частоты вра­щения вала дизеля от минимальной до максимальной, который осуществляется путем быстрого, но плавного нажатия на педаль пода­чи топлива (до упора) с интервалом не менее 7 и не более 15 с. Затем производится серия из не менее чем четырех измерений следующего типа. Быстро, но не резко нажимают на педаль управления подачей топлива и удерживают ее в нажатом положении 2…3 с, поддерживая постоянную частоту вращения, ограничиваемую регулятором ТНВД. При этом измеряется пиковое значение натурального показателя ослабления светового потока К, частота вращения, ограниченная регулятором, и частота вращения при холостом ходе. При каждом последующем измерении фиксируют пиковое значение натурального показателя ослабления светового потока К, когда четыре последовательных значения пока­зателя располагаются в зоне шириной 0,25 м-1 по шкале К, но не обра­зуют убывающую последовательность. За результат измерения принимают среднее арифметическое значение результатов этих четырёх из­мерений. Пример: пусть при проведении испытаний получены следующие значения по шкале К при проведении проверки на режиме свободных ускорения для двигателя без наддува 1,15; 1,0; 0,8; 1,0. Несмотря на то, что максимальная величина К не превышает допустимого значения 1,2, разница между значениями 1,15 и 0,8 превышает значение 0,25 м-1, а это значит что данный автомобиль не проходит тестовую проверку. Проведение измерений в режиме максимальной частоты вращения Измерения на...

Средства технического диагностирования и их классификация

Средства технического диагностирования и их классификация

Средства технического диагностирования (СТД) — это технические устройства, предназначенные для измерения текущих значений диагностических параметров. В общем случае любое СТД состоит из следующих элементов (блоков): источник воздействия (при тестовом методе), датчик, каналы связи усилитель и преобразователь сигнала блоки измерения, расшифровки и регистрации (записи) ди­агностического параметра блок накопления и обработки информации В современной аппаратуре блоки измерения, расшифровки, регистрации, накопления и обработки информации создаются на базе видео- и микропроцессорной техники, совместимой с пер­сональным компьютером (ПК). В зависимости от выполняемых задач, области применения и ряда других признаков средства технической диагностики можно классифицировать по разным параметрам. По назначению СТД подразделяются на штатные и спе­циальные: Штатные СТД (термометры, манометры, расходомеры, ам­перметры, вольтметры и др.) предназначены в основном для функционального диагностирования, т.е. для обычного текуще­го контроля. К специальным относятся СТД, которые периодически ис­пользуются для уточнения работ по ремонту, проверки качества ремонта или определения причин выхода из строя. По области применения СТД подразделяются на уни­версальные и специализированные: Универсальные СТД предназначены для измерения определен­ных физических величин и параметров на любых объектах без учета их особенностей. К таким приборам относятся все извест­ные средства для измерения электрических параметров и магнит­ного поля, температуры, давления и т.д. В эту группу входят приборы для измерения и спектрального анализа вибрации и шума, средства дефектации и т.п. Специализированные СТД создаются для диагностирования конкретных элементов автомобиля. Например, имеются специ­альные приборы для контроля состояния только системы питания или герметичности цилиндров двигателя внутреннего сгорания (ДВС). По мобильности СТД подразделяются на стационарные, встроенные и переносные (передвижные): Специальные СТД, как правило, являются переносными или стационарными. Штатные могут быть как переносными, так и встроенными.

✪Устройство автомобиля Авто⚡сайт №❶