Рубрика: Дизельная топливная аппаратура

Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД

Устройство ТНВД BOSCH (Бош) VE. Топливный насос высокого давления

Топливный насос высокого давления ⭐ (ТНВД) — основной конструктивный элемент системы впрыска дизельного двигателя, выполняющий две основные функции: дозированную подачу топлива в цилиндры двигателя под давлением и определение правильного момента впрыска. После появления аккумуляторных систем впрыска, задачу определения момента подачи топлива выполняет электронная форсунка. Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД Принципиальная схема системы топливоподачи дизеля с одно­плунжерным распределительным топливным насосом (ТНВД) с торцевым кулачко­вым при­водом плунжера показана на рисунке: Рис. Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД: 1 – топливопровод низкого давления; 2 – тяга; 3 – педаль подачи топлива; 4 – ТНВД; 5 – электромагнитный клапан; 6 – топливопровод высокого давления; 7 – топливопровод сливной магистрали; 8 – форсунка; 9 – свеча накаливания; 10 – топливный фильтр; 11 – топливный бак; 12 – топливоподкачивающий насос (применяется при магистралях большой протяженности; 13 – аккумуляторная батарея; 14 – замок «зажигания»; 15 – блок управления временем включения свечей накаливания Топливо из бака 11 прокачивается по топливо­проводу низкого давления в топливный фильтр тонкой очистки топлива 10, откуда засасывается топливным насосом низкого давления и затем направляется во внутреннюю полость корпуса ТНВД 4, где создается давление порядка 0,2 … 0,7 МПа. Далее топливо поступает в насосную секцию высокого давления и с помощью плунжера — распреде­лителя в соответствии с порядком работы цилиндров подается по топливопроводам высокого давления 6 в форсунки 8, в результате чего осуществляется вспрыскивание топлива в камеру сгорания дизеля. Избыточное топливо из корпуса ТНВД, форсунки и топливного фильтра (в некоторых конструкциях) сливается по топливо­проводам 7 обратно в топливный бак. Охлаждение и смазка ТНВД осуществляются циркулирующим в системе топливом. Фильтр тонкой очистки топлива имеет важное значение для нормальной и безаварийной работы ТНВД и форсунки. Поскольку плунжер, втулка, нагнетательный клапан и элементы форсунки являются деталями прецизионными, топливный фильтр должен задерживать мельчайшие абразивные частицы размером 3…5 мкм. Важной функцией фильтра является также задержание и выведение в осадок воды, содержащейся в топливе  Попадание влаги во внутреннее пространство насоса может привести к выходу последнего из строя по причине образования коррозии. Топливный насос подает в цилиндры дизеля строго дози­рован­ное количество топлива под высоким давлением в определенный момент времени в зависимости от нагрузки и скоростного режима, поэтому характеристики двигателей существенно зависят от работы ТНВД. Схема и общий вид распределительного насоса VE Схема распределительного насоса VE представлена на первом рисунке, а его общий вид на следующем. Основные функциональные блоки топливного насоса VE представляют собой: роторно-лопастной топливный насос низкого давления с регулирующим перепускным клапаном блок высокого давления с распределительной головкой и дозирующей муфтой автоматический регулятор частоты вращения с системой рычагов и пружин электромагнитный запирающий клапан, отключающий подачу топлива автоматическое устройство (автомат) изменения угла опережения впрыскивания топлива Рис. Схема топливного насоса — Bosch VE: 1 – вал привода насоса; 2 – перепускной клапан регулирования внутреннего давления; 3 – рычаг управления подачей топлива; 4 – грузы регулятора; 5 – жиклер слива топлива; 6 – винт регулировки полной нагрузки  7 – передаточный рычаг регулятора; 8 – электромагнитный клапан остановки двигателя; 9 – плунжер  10 – центральная пробка; 11 – нагнетательный клапан; 12 – дозирующая муфта; 13 – кулачковый диск; 14 – автомат опережения впрыска топлива; 15 – ролик; 16 – муфта; 17 – топливоподкачивающий насос низкого давления   Рис. Общий вид распределительного ТНВД VE: а – ТНВД; б – блок высокого давления с распределительной головкой и дозирующей муфтой. Позиции соответствуют позициям...

Система непосредственного впрыска дизельного двигателя с ТНВД VP-44

Топливный насос высокого давления VP-44

Топливные насосы высокого давления VP-44  используются на мо­делях дизелей Opel Ecotec, Opel Astra, Audi, Ford, BMW, Daimler-Chrysler. Давление впрыска, развиваемое насосами такого типа достигает 1000 кгс/см2. Схема топливной системы с этим ТНВД представлена на рисунке: Рис. Система непосредственного впрыска дизельного двигателя с ТНВД VP-44: 1 – топливный бак; 2 – фильтр тонкой очистки топлива; 3 – ТНВД; 4 – ЭБУ ТНВД; 5 – электромагнитный клапан управления подачей топлива; 6 – электромагнитный клапан угла опережения впрыска; 7 – автомат опережения впрыска; 8 – ЭБУ двигателя; 9 – форсунка с датчиком подъема иглы; 10 – свеча предпускового подогрева с закрытым нагревательным элементом; 11 – ЭБУ свечей накаливания; 12 – датчик температуры охлаждающей жидкости; 13 – датчик частоты вращения коленчатого вала; 14 – датчик температуры воздуха на впуске; 15 – массовый расходомер воздуха; 16 – датчик давления наддува; 17 – турбокомпрессор; 18 – привод клапана системы рециркуляции ОГ; 19 – привод клапана регулирования давления наддува; 20 – вакуумный насос; 21 – аккумуляторная батарея; 22 – приборная панель с указателем расхода топлива, тахометром и т.д.; 23 – датчик положения педали акселератора; 24 – концевой выключатель (на педали сцепления); 25 – контакты стоп-сигнала; 26 – датчик скорости автомобиля; 27 — блок управления круиз-контролем; 28 – компрессор кондиционера; 29 – диагностический дисплей с выводами для диагностического тестера. Особенностью приведенной системы является совмещенный блок управления как для ТНВД, так и для других систем двигателя. Блок управления состоит из двух частей, оконечные каскады питания электромагнитов которых расположены на корпусе ТНВД. Общий вид ТНВД VP-44 показан на рисунке: Рис. Топливный насос высокого давления VP-44: 1 – топливоподкачивающий насос; 2 – датчик частоты и положения вала насоса; 3 – кулачковая шайба; 4 – блок управления; 5 – штекерная колодка; 6 – нагнетательные плунжеры; 7 – ротор-распределитель; 8 – электромагнитный клапан управления подачей; 9 – нагнетательный клапан; 10 – электромагнитный клапан установки момента начала впрыскивания; 11 – устройство опережения впрыскивания; 12 – датчик угла пово­рота приводного вала ТНВД Контур низкого давления Топливоподкачивающий насос 17 в ТНВД VP-44 шиберного типа аналогичный рассмотренным выше. Давление топлива, создаваемое топливоподкачивающим насосом на стороне на­гнетания, зависит от частоты вращения колеса насоса. В то же время это давление при возрастании частоты вращения уве­личивается непропорционально. Клапан регулирования давления 2 распо­лагается в непосредственной близости от топливоподкачивающего насоса. Клапан изменяет давление нагнетания, создаваемое топливоподкачивающим насосом, в зависимости от требуемого расхода топлива. Топливо от топливоподкачивающего насоса поступает к насосной секции ТНВД и устройству опере­жения впрыски­вания. Рис. Гидравлическая схема ТНВД VP-44: 1 – блок управления работой дизеля; 2 – клапан регулирования давления; 3 – поршень клапана регулирования давления; 4 – клапан дросселирования перепуска; 5 – отводной канал; 6 – дроссель; 7 блок управления ТНВД; 8 – поршневой демпфер; 9 – электромагнитный клапан управления подачей; 10 – нагнетательный клапан; 11 – форсунка; 12 – электромагнитный клапан установки момента начала впрыскивания; 13 – ротор-распределитель; 14 – насосная секция ТНВД с радиальным движением плунже­ров; 15 – датчик угла пово­рота приводного вала ТНВД; 16 – устройство опере­жения впрыски­вания; 17 – топливоподкачивающий насос Если создаваемое давление топлива превышает определенную величину, тор­цевая кромка поршня 3 открывает отверстия  расположенные радиально, и через них поток топлива сливается по...

Схема работы двухрежимного центробежного регулятора

Регулятор частоты вращения коленчатого вала дизельного двигателя

В отличие от бензинового двигателя дизельные двигатели не имеет во впускном трубопроводе дроссельной заслонки, позволяющей четко регулировать частоту вращения коленчатого вала за счет изменения подачи воздуха с одновременным изменением подачи топлива. У дизельного двигателя не существует положения управляющей рейки, которое бы позволило двигателю поддерживать определенную частоту вращения коленчатого вала двигателя без помощи регулятора. Например, при запуске холодного двигателя и его работе на холостом ходу, потери на трение кривошипно-шатунного, газораспределительного и других механизмов и приводимых от двигателя агрегатов начинают снижаться, а количество подаваемого топлива будет постоянным. При отсутствии регулятора частота вращения будет увеличиваться и может достичь критической точки, при которой может произойти разрушение двигателя. Регуляторы частоты вращения коленча­того вала дизельного двигателя устанавливаются на насосе высокого давления и приводятся в действие от кулачкового вала. Его работа основана, как и в автоматической муфте опережения впрыска, на использовании центробежных сил. Например, при заданном положении педали управления подачи топлива и возникновении дополнительного сопротивления движению (на подъеме) частота вращения коленчатого вала двигателя будет уменьшаться, а скорость автомобиля падать. Чтобы ее поддержать на заданном уровне, необходимо повысить крутящий момент двигателя. Это может быть достигнуто увеличением количества топлива, впрыскиваемого в цилиндры двигателя. Регулятор воспринимает снижение частоты вращения коленчатого вала и автоматически увеличивает подачу топлива насосом высокого давления, благодаря чему скорость автомобиля восстанавливается до заданного значения. Аналогичным образом регулятор изменяет подачу топлива при уменьшении нагрузки на двигатель, только в этом случае управляющее воздействие регулятора сводится к уменьшению количества впрыскиваемого топлива. В результате при снижении нагрузки на двигатель происходит уменьшение скорости движения и доведение ее до заданного уровня. Таким образом, регулятор авто­матически изменяет подачу топлива при изменении нагрузки на двигатель и обеспечивает установку любого выбранного скоростного режима при отклонениях от него в пределах – 10…20%. Различают двухрежимный и всережимные регулятора частоты вращения коленчатого вала. Двухрежимный регулятор (типа RQ) поддерживающий определенную частоту вращения коленчатого вала на режимах минимальной и максимальной частоты вращения коленчатого вала. Всережимный регулятор (типа RSV) поддерживает необходимую частоту вращения на всех режимах работы двигателя. Всережимные регуляторы устанавливаемые на небольших высокооборотистых двигателях позволяют поддерживать частоту вращения коленчатого вала в пределах 6…10%. В топливных насосах применяют регуляторы с различными принципами работы: механические пневматические гидравлические комбинированные Для автомобильных двигателей наиболее широко при­меняют механические центробежные регуляторы и реже пневматические регуляторы. Центробежный регулятор представляет собой систему, состоящую из вращающихся грузов, пружин и рычагов, связанных с рей­кой топливного насоса высокого давления, управляющей цикловой подачей топлива. Двурежимный регулятор В двухрежимных регуляторах механизм регулятора связан с рейкой насоса высокого давления при помощи дифференциального рычага, соединенного также и с тягой педали акселератора, которой управляет водитель. Основными элементами двухрежимного центробежного регулятора являются большие 4 и малые 3 грузы. Рис. Схема работы двухрежимного центробежного регулятора Грузы свободно посажены на пальцы крестовины 1 и упираются лапками в скользящую муфту 5, также свободно установ­ленную на вращающемся валу 6 регулятора, связанном зубчатой передачей с валом топливного насоса. С противоположной стороны в скользящую муфту под действием слабой пружины 12, помещен­ной в стакане 13 и втулке 11, упирается основной (вильчатый) рычаг 7 регулятора. Этот рычаг соединен при помощи двуплечего рычага 8 с рейкой 9 топливного насоса высокого давления и тягой 14 педали акселератора. Сильная...

Крутящий момент Md

Впрыск топлива в дизельном двигателе и его регулировка

В такте впуска дизельный двигатель впускает только воздух. В такте сжатия этот воздух нагревается до температуры настолько высокой, что дизельное топливо, впрыснутое в цилиндр в конце такта сжатия, воспламеняется самостоятельно. Количество топлива в двигателе дозируется с помощью топливного насоса высокого давления (ТНВД). Топливо впрыскивается под высоким давлением через форсунку в камеру сгорания. Впрыск топлива должен происходить следующим образом: с точно дозированным количеством топлива в соответствии с нагрузкой двигателя; в требуемый период времени; в точно определенный период времени; способом, соответствующим конкретному процессу сгорания. Рис. Схема системы топливоподачи дизельного двигателя: 1. Топливный бак; 2. Топливоподкачивающий насос (топливный насос низкого давления); 3. Топливный фильтр; 4. Рядный ТНВД; 5. Устройство опережения момента впрыска; 6. Регулятор; 7. Держатель форсунки с форсункой; 8. Возвратный топливопровод; 9. Накальная свеча с закрытым элементом; 10. Аккумуляторная батарея; 11. Выключатель предварительного накала и стартера; 12. Блок управления предварительным накалом. ТНВД и регулятор, соединенные с управляющей (контрольной) зубчатой рейкой являются ответственными за то, чтобы указанные условия выполнялись. Количество топлива, впрыснутого за один ход плунжера ТНВД, примерно пропорционально крутящему моменту двигателя. Если на двигателе используется механический (центробежный) регулятор числа оборотов, то рейка управления соединяется с педалью акселератора («газа») через регулятор. Рис. Замкнутый контур управления для механического регулятора: 1. Дизельный двигатель; 2. Рядный ТНВД; 3. Регулятор; 4. Обороты двигателя; 5. Количество впрыскиваемого топлива; 6. Педаль акселератора; 7. Ход управляющей рейки; 8. Давление подаваемого воздуха; 9. Желаемое число оборотов; 10. Атмосферное давление; 11. Управление крутящим моментом; 12. Подача при полной нагрузке; 13. Начальное количество. У электронного регулятора (EDC) педаль акселератора оснащена датчиком, соединенным с электронным блоком управления (ЭБУ или ECU). Когда водитель нажимает на педаль газа, то перемещение преобразуется в соответствующий ход рейки с учетом оборотов двигателя в данный момент времени. Почему дизельному двигателю нужен регулятор? У дизельного двигателя не существует положения управляющей рейки, которое бы позволило дизельному двигателю точно поддерживать свои обороты без помощи регулятора. На холостом ходу, к примеру, без регулятора числа оборотов, обороты двигателя будут либо падать, пока двигатель не остановится, либо будут продолжать увеличиваться, что, в конце концов, приведет к саморазрушению двигателя. Последняя возможность обязана тому, что дизель работает с избытком воздуха, что означает отсутствие эффективного дросселирования поступающей в двигатель смеси при возрастании его оборотов. К примеру, если холодный двигатель был заведен и остался работать на холостом ходу, тогда как продолжает впрыскиваться начальное количество топлива, то характерное трение вскоре начнет снижаться. То же самое относится к нагрузке двигателя от приводимых от него агрегатов, таких как генератор, воздушный компрессор, ТНВД и т.д. Это означает, что если положение управляющей реики осталось неизменным и рейка не втягивалась для уменьшения количества подаваемого топлива (как сделал бы регулятор), то обороты двигателя будут возрастать все больше и больше (из-за указанного выше падения трения), пока они не достигнут точки саморазрушения. Другими словами, является обязательным, чтобы дизель был оснащен регулятором числа оборотов. В настоящее время для рядных ТНВД используются либо механические (центробежные) регуляторы либо система электронного управления дизельным двигателем (EDC). Пневматические регуляторы, управляемые давлением впускного коллектора устанавливались ранее на небольшие ТНВД. От них пришлось отказаться в результате возросших требований к точности регулирования и к работе регулятора. Работа регулятора...

Смазка ТНВД

Регулировка топливного насоса высокого давления (ТНВД)

Регулировка ТНВД на проверочном стенде Регулировка плунжерных пар на одинаковую величину хода и одинаковое количество подачи, а также регулировка регулятора числа оборотов и устройства (муфты) опережения впрыска выполняются на специальном проверочном стенде для ТНВД. Эти стенды оснащены всеми необходимыми измерительными устройствами и приводом с изменяемым числом оборотов. Инструкции по ремонту и проверкам на проверочном стенде вместе с необходимыми данными содержат всю необходимую информацию для ремонтных и сервисных работ. Регулировка ТНВД на двигателе ТНВД синхронизируется с двигателем с помощью установочных меток для начала впрыска (закрывания канала). Эти метки находятся на двигателе и на ТНВД. Обычно такт сжатия двигателя используется в качестве основы (точки отсчета для регулировок момента впрыска, хотя для конкретной модели двигателя могут использоваться и другие возможности). В связи с этим важно, чтобы учитывались инструкции завода-изготовителя. В большинстве случаев установочная метка для закрывания канала находится на маховике двигателя, на шкиве клинового ремня или на гасителе колебаний. Имеется несколько возможностей для регулировки ТНВД и установки правильного значения начала впрыска (закрывания канала). ТНВД поставляется с завода в таком виде, когда его кулачковый вал заблокирован в заданном положении. После у становки ТНВД на двигатель и укрепления его болтами, когда коленчатый вал находится в соответствующем положении, кулачковый вал ТНВД отпускается. Этот хорошо проверенный метод недорог и приобретает все большую и большую популярность. ТНВД снабжается индикатором закрывания канала на конце регулятора, который должен быть совмещен с установочными метками, когда ТНВД устанавливается на двигатель. На устройстве (муфте) опережения момента впрыска имеется метка закрывания отверстия, которая должна быть совмещена с меткой на корпусе ТНВД. Этот метод является не таким точным, как два описанных раньше. После того, как ТНВД установлен на двигателе, используется метод перетока высокого давления на одном из выходных отверстий насоса, чтобы определить точку (момент) закрывания канала (т.е. когда плунжер перекрывает выходной топливный канал). Этот «мокрый» метод также активно заменяется методом 1 и 2, описанным раньше. Рис. Регулировка ТНВД Удаление воздуха из системы впрыска топлива Рис. Удаление воздуха из системы впрыска топлива Пузырьки воздуха в топливе могут ухудшать работу ТНВД или даже делают ее невозможной. В связи с этим устройства, которые устанавливаются впервые или временно отключаются, должны быть избавлены от воздуха. Если топливоподкачивающий насос снабжен ручным насосом, то он используется для заполнения магистрали, топливного фильтра и ТНВД топливом. При этом винты для вентиляции (1) на крышке фильтра и на ТНВД должны остаться открытыми, пока выходящее топливо не будет содержать пузырьков. Удаление воздуха должно производиться каждый раз, когда заменяется топливный фильтр или производятся какие-либо работы на системе. При работе в реальных условиях из системы впрыска воздух удаляется автоматически через клапан перетока (2) на топливном фильтре (постоянная вентиляция). Вместо клапана может использоваться ограничитель, если насос не имеет клапана перетока. Смазка ТНВД Рис. Смазка ТНВД ТНВД и регулятор лучше всего соединить с системой смазки двигателя, т.к. при этой форме смазки ТНВД остается необслуживаемым. Фильтрованное моторное масло подается к ТНВД и регулятору через нагнетательную магистраль и входной канал через отверстие роликового толкателя или с помощью специального клапана подачи масла. В случае ТНВД с основанием или рамой, возврат смазочного масла к двигателю осуществляется через возвратную магистраль (b). В случае фланцевого крепления...

Схема работы корректора с турбонаддувом

Корректор по давлению наддува дизеля

Автоматический противодымный корректор или корректор по давлению наддува дизеля (LDA) служит для приведения в соответствие расхода топлива, подаваемого в цилиндры дизеля, ве­личине расхода воздуха, подаваемого компрессором, исключая таким образом дымление двигателя. Необходимость установки указанного автоматического устройства определяется изменением плотности воздуха в цилиндрах дизеля с турбонаддувом в зависи­мости от режима работы турбокомпрессора. Особенно необходи­ма работа корректора на режимах разгона дизеля, когда величина топливоподачи возрастает значительно быстрее, чем расход воз­духа, при этом коэффициент избытка воздуха уменьшается, и работа дизеля сопровождается дымлением. Конструктивное исполнение корректора по давлению над­дува, установленного на верхней крышке корпуса насоса, пока­зано на рисунке: Рис. Схема работы корректора с турбонаддувом: а – положение мембраны при увеличенном давлении наддува; б – положение мембраны при недостаточном давлении наддува; 1 – рычаг-упор корректора; 2 – шток; 3 – мембрана; 4 – подвод разряжения от впускного коллектора; 5 – пружина; 6 – жиклер слива топлива: 7 – стержень; 8 – регулировочный винт максимальной подачи; 9 – увеличенный ход подачи; 10 – дозирующая муфта; 11 – плунжер; 12 – пусковой рычаг; 13 – силовой рычаг Внутренняя полость корректора разделена мембраной 3 на две камеры — верхнюю, соединенную с впускным коллектором и находящуюся под давлением наддува, и нижнюю, содержащую пружину 5, которая действует на мембрану, оказы­вая сопротивление ее перемещению вниз. Нижняя камера корректора находится под атмосферным давлением. Мембрана 3 соединена со штоком 2, имеющим управляющий конус, в кото­рый упирается подвижный стержень 7, передающий движение штока и, следовательно, мембраны рычагу-упору корректора 1. Шток взаимодействует с силовым рычагом 13 регулятора. Рабо­та корректора происходит следующим образом. Если величина давления наддува недостаточна для преодоления усилия затяж­ки пружины 5, то мембрана 3 и шток 2 находятся в исходном по­ложении, как это показано на рисунке б. При увеличении давле­ния воздуха, подаваемого компрессором, мембрана, преодоле­вая сопротивление пружины, перемещается вниз, соответствен­но перемещая шток 2 с управляющим конусом, в результате чего стержень 7 изменяет свое положение и рычаг 1 поворачивается относительно оси по часовой стрелке под действием рабочей пружины регулятора. Силовой рычаг 13, следуя перемещению рычага-упора 1, также поворачивается вместе с пусковым рыча­гом 12 относительно их общей оси, перемещая до­зирующую муфту в направлении увеличения подачи. Таким об­разом, величина топливоподачи оказывается в соответствии с количеством воздуха, подаваемого в цилиндры дизеля, посколь­ку это количество пропорционально давлению наддува. Если скоростной и нагрузочный режимы уменьшаются, то снижается и давление наддува, пружина корректора перемещает мембрану со штоком вертикально вверх, и механизм регулятора работает в направлении, обратном описанному выше, уменьшая подачу топлива в функции давления наддува. Если работа турбокомпрессора нарушается, то автомати­ческое устройство LDA, т.е. корректор по давлению наддува, ока­зывается в исходном положении на верхнем упоре, обеспечивая работу дизеля без дымления. Величина макси­мальной подачи топлива для данного двигателя регулируется винтом 8, установленным на крышке ТНВД.

Схема системы питания топливом мощного дизеля

Система питания топливом дизельного двигателя

Система питания топливом дизельного двигателя предназначена для размещения, очистки и своевременной подачи топлива в цилиндры двигателя в нужном количестве и под достаточным давлением на всех режимах его работы при любой температуре окружающего воздуха. Дизельное топливо Дизельное топливо является одним из продуктов переработки нефти. В нем содержатся различные углеводороды (парафины, нафтены, ароматические и др.). Число атомов углерода, входящих в молекулы дизельного топлива, достигает тридцати. Основное качество дизельного топлива — легкость воспламенения при соприкосновении с горячим воздухом. Воспламеняемость топлива характеризуется цетановым числом. Чем выше это число, тем менее стойки к окислению молекулы топлива и легче оно воспламеняется. У дизельного топлива цетановое число составляет 40 — 50 (чаще всего 45). Важной характеристикой топлива также является его вязкость при различных температурах. Для обеспечения нормальной работы двигателя топливо не должно застывать при низкой температуре (до -60 °С). Кроме того, необходимо, чтобы топливо не было токсичным, обладало антикоррозионными и смазывающими свойствами, а также не создавало паровые пробки в топливопроводах при температурах до 50 °С. Для автотракторных дизелей используется топливо марок А (арктическое), 3 (зимнее) и Л (летнее). Наиболее широко распространено топливо марок З (при отрицательной температуре воздуха) и Л (при температурах выше 0 °С). Требования к агрегатам и узлам системы питания Ко всем агрегатам и узлам системы питания предъявляются следующие основные требования: герметичность малые масса и габариты надежность коррозионная стойкость малые гидравлические сопротивления простота низкая стоимость обслуживания Топливопроводы и агрегаты системы питания топливом должны быть расположены в моторном отделении ТС таким образом, чтобы при их неисправности капающее топливо не попадало на детали, имеющие температуру, способную вызвать его воспламенение. Общее устройство системы питания Схема системы питания топливом мощного дизеля приведена на рисунке. В общем случае в систему питания топливом входят узлы, размещенные вне двигателя (на раме или в корпусе машины), и на двигателе. К первым относятся топливные баки бачок 7 для сбора топлива, предпусковой топливоподкачивающий насос 10, топливораспределительный кран 77, топливопроводы низкого давления и некоторые другие узлы. Ко вторым в первую очередь относятся основной топливоподкачивающий насос 8, топливный насос высокого давления (ТНВД) 5, форсунки 4 и топливопроводы высокого давления. При работе двигателя топливо из топливных баков забирается основным топливоподкачивающим насосом и под давлением 0,05…0,1 МПа подается к ТНВД. По пути из баков к насосу топливо проходит через топливораспределительный кран, предпусковой топливоподкачивающий насос и фильтр 9 грубой очистки. Если на ТС установлен только один топливный бак или несколько баков, сообщающихся друг с другом, то топливораспределительный кран отсутствует. Перед поступлением в ТНВД из насоса топливо очищается от мельчайших примесей в фильтре 3 тонкой очистки. Нагнетательные секции ТНВД, приводимого в действие от коленчатого вала двигателя, в определенные моменты согласно рабочему циклу и порядку работы двигателя подают топливо под высоким давлением (до 50 МПа и более) в необходимом количестве к форсункам. Через форсунки, ввернутые в головку блока цилиндров, топливо впрыскивается в камеры сгорания в те моменты, когда в цилиндрах завершается такт сжатия. Рис. Схема системы питания топливом мощного дизеля: 1 — топливные баки; 2 — кран для выпуска воздуха; 3 — фильтр тонкой очистки; 4 — форсунки; 5 ТНВД; 6 — двигатель; 7 — бачок для сбора топлива; 8 — основной топливоподкачивающий насос;...

Топливный насос УТН-5

Топливный насос УТН-5. Устройство и принцип действия

Топливный насос УТН-5 в конструктивном отношении подобен топливным насосам типа 4ТН-8,5 х 10. Его устанавливают на двигателях Д-50, Д-50Л и Д-37М. Для снижения металлоемкости корпус и некоторые другие детали насоса изготовлены из алюминиевого сплава. Чтобы уменьшить размер насоса и повысить жесткость конструкции, расстояние между осями плунжеров сокращено до 32 мм против 40 мм у топливных насосов 4ТН-8,5 х 10, соответственно уменьшено расстояние между опорами кулачкового вала. Применение новых материалов и сокращение размеров позволило при сохранении взаимозаменяемости снизить вес топливного насоса УТН-5 в два раза и длину — в полтора раза по сравнению с насосом 4ТН-8,5х10. При этом почти для 32% деталей сохранена взаимозаменяемость. Топливный насос является унифицированной моделью. На базе его секций может быть создан топливный насос с числом секций от одной до восьми. Рис. Топливный насос УТН-5: 1 — подкачивающий насос; 2 — сапун; 3 — отсечной канал; 4 — перепускной клапан; 5 — пружина; 6 — нажимной штуцер; 7 — прокладка; 8 — нагнетательный клапан; 9 — втулка плунжера; 10 — подводящий канал; 11 — штифт; 12 — поворотная гильза; 13 — верхняя тарелка; 14 — пружина плунжера; 15 — болт толкателя; 16 — фиксирующий винт; 17 — толкатель плунжера; 18 — сливная трубка; 19 — кулачковый вал; 20 — рейка; 21 — стяжной винт; 22 — зубчатый венец; 23 — плунжер. Головка топливного насоса УТН-5 отлита заодно с корпусом, к которому спереди присоединена чугунная плита для крепления насоса к двигателю. С задней стороны находится фланец для крепления регулятора. На плунжерах 23 имеется по две спиральные канавки, благодаря которым уравновешиваются боковые давления топлива на плунжер, возникающие в процессе впрыска. Устранение одностороннего действия сил в момент впрыска снижает износ плунжерных пар и удлиняет срок их службы. Втулка плунжера фиксируется от проворачивания штифтом 11, который входит в паз втулки. Выпадение штифтов предотвращает крышка люка. Нагнетательный клапан 8, пружина 5 и нажимной штуцер 6 устроены подобно соответствующим деталям топливного насоса 4ТН-8,5 х 10. Под нажимным штуцером установлена капроновая прокладка 7. Давление открытия нагнетательного клапана должно быть в пределах 1,4—1,6 Мн/м2 (14—16 кГ/см2) по сравнению с давлением 0,8 Мн/м2 (8 кГ/см2) у насосов 4ТН-8,5 X10. Подачу топлива изменяют поворотом плунжера. Вместо поводка с хомутиком, как это сделано в насосе 4ТН-8,5 х 10, в насосах УТН-5 механизм поворота включает в себя рейку 20 и зубчатые венцы 22. На втулки 9 плунжеров надеты поворотные гильзы 12 с зубчатыми венцами 22. На гильзах в определенных положениях закреплены разрезные зубчатые венцы. Поворотная гильза имеет внизу два продольных паза, в которые плунжер заходит выступами. На гильзу надета пружина 14 плунжера. При помощи верхней тарелки 13 она упирается в корпус насоса, а нижним концом через нижнюю тарелку — в болт 15 толкателя. Зубчатые венцы постоянно сцеплены с рейкой, которая может перемещаться в двух бронзовых втулках. От вращения вокруг своей оси она удерживается стопорным винтом (в более поздних выпусках отсутствует). Усилие, необходимое для перемещения рейки, не должно превышать 2,5 н (0,25 кГ). При перемещении рейки зубчатый венец поворачивается вместе с гильзой 12, которая повертывает плунжер и тем самым изменяет величину подачи. Толкатель 17 плунжера фиксируется винтом 16, который своим концом...

Непосредственный впрыск в дизеле

Сгорание дизельного топлива и выбросы вредных веществ

Дизельные двигатели в настоящее время, бесспорно, являются самыми эффективными двигателями внутреннего сгорания. В Западной Европе рыночная доля новых автомобилей с дизельными двигателями порой превышает 50%. Такие двигатели сочетают низкий расход топлива и небольшие выбросы углекислого газа с очень высоким крутящим моментом. Удельная мощность дизельных двигателей находится на уровне бензиновых. Недостатками являются выбросы частиц и окислов азота. За последние годы был достигнут огромный прогресс в плане плавности работы и уменьшения выбросов дизельных двигателей. Автомобиль с современным дизельным двигателем расходует примерно на треть меньше топлива, чем сопоставимый по мощности и другим параметрам автомобиль с бензиновым двигателем. Насколько хороши современные дизельные двигатели, показало испытание, проведенное Национальным институтом онкологии в Милане (Италия). Было установлено, что при выкуривании трех сигарет выбрасывается в 10 раз больше частиц, чем при работе современного дизельного двигателя на холостом ходу в течение 30 минут. Сгорание дизельного топлива Процесс сгорания дизельного топлива бывает двух типов: непосредственный впрыск впрыск в разделенные камеры сгорания Использовавшиеся ранее процессы с разделенными камерами, такие как форкамерное и вихрекамерное смесеобразование, имели существенные недостатки, поэтому больше практически не используются, и мы не будем подробно останавливаться на них. Перспективные разработки в области организации сгорания дизельного топлива лежат в области использования однородной смеси. В современных двигателях используются системы непосредственного впрыска топлива с организацией кругового воздушного потока и углублением в днище поршня. Относительно высокий уровень шума, вызываемый жестким сгоранием топлива с быстрым ростом давления, удалось снизить посредством организации предварительного впрыска топлива (в том числе многократного) и различных второстепенных мер, таких, как полное капсулирование двигателя и уменьшение степени сжатия. Рис. Непосредственный впрыск в дизеле Различия между дизельными двигателями легковых и грузовых автомобилей состоят главным образом в геометрии камеры сгорания и использовании распылителей форсунок с одним или несколькими отверстиями. У двигателей легковых автомобилей с непосредственным впрыском камера сгорания имеет форму сердца, а топливо впрыскивается через форсунки с несколькими отверстиями (4, 5, 6 или 8). Такая технология требует мощного кругового воздушного потока вокруг оси цилиндра, чтобы обеспечить хорошее смешивание воздуха с топливом в камере сгорания. Этот круговой воздушный поток называют также спином. Преимущества непосредственного впрыска перед использованием разделенных камер сгорания: снижение расхода топлива на 15-20%; отсутствие потерь при переходе смеси из форкамеры или вихревой камеры в камеру сгорания; более низкие тепловые потери за счет меньшей площади поверхности в дне поршня; более высокий тепловой КПД; удельный расход топлива 160-200 г/кВтч. Проблемы непосредственного впрыска топлива: создание вихревого потока частично мешает очистке от продуктов сгорания в цилиндре; затруднено изготовление конструктивно сложных впускных каналов особой формы; аэродинамически разные формы каналов при многоклапанной конструкции; проблемы с холодным пуском из-за вихревого движения воздуха; охлаждение камеры сгорания отчасти затруднено (требуется охлаждение днища поршня разбрызгиванием масла). Однако преимущества этой технологии существенно перевешивают ее недостатки. Большие конструктивные сложности при изготовлении систем впуска быстро окупаются. При непосредственном впрыске особое значение имеют положение и количество впрыскиваемых струй в камере сгорания. Они влияют на: совокупность условий образования смеси; процесс подготовки и сжигания смеси; шум при сгорании (скорость нарастания давления); КПД двигателя; мощность, крутящий момент и характеристики крутящего момента двигателя; достигаемый диапазон частот вращения коленчатого вала двигателя; условия образования сажи и выбросов частиц; условия образования всех остальных...

Диаграмма изменения давления в дизельном двигателе в зависимости от угла поворота коленчатого вала

Муфта опережения впрыска топлива

В дизельных двигателях топливо впрыскивается в нагретый сжатием воздух, имеющий температуру 450…550 °С и давление 30…40 кгс/см2. Подача топлива начинается до ВМТ и может заканчиваться как до, так и после ВМТ. Началом подачи топлива считается начало впрыска топлива ТНВД. Подача топлива начинается в точке А. Угол поворота коленчатого вала между началом впрыска и В.М.Т. называют углом опережения впрыска. В течение некоторого времени после начала впрыска горение еще не поступает. Давление в этот период изменяется из-за продолжающегося сжатия, причем вначале несколько снижается температура, а соответственно и давление сжимаемого воздуха вследствие затраты теплоты на нагревание и испарение поданного топлива. В течение указанного периода развиваются предпламенные реакции, возникают первые очаги самовоспламенения, и давление начинает повышаться в результате выделения теплоты сгорания. Рис. Диаграмма изменения давления в дизельном двигателе в зависимости от угла поворота коленчатого вала: Р – давление в цилиндре двигателя; А – начало впрыска топлива; В – начало сгорания топлива; с – период задержки воспламенения; 1 ­­­– такт впуска; 2 – такт сжатия; 3 – такт сгорания и расширения; 4 – такт выпуска Точку В, в которой линия повышения давления вследствие сгорания отрывается от линии сжатия при его отсутствии, условно принимают за начало сгорания, а интервал времени, (в градусах поворота коленчатого вала) между точками А и В – за период задержки воспламенения или период индукции. В результате сгорания значи­тельной части испарившегося топлива, образовавшего с воздухом за этот период горючую смесь, а также вследствие сгорания продол­жающего поступать через форсунку топлива давление и температура на участке А–В быстро повышаются. Подача топлива в цилиндры двигателя зависит от его режима работы и может изменяться. Для опережения впрыскивания топлива в цилиндры дизеля в зависимости от частоты вращения его коленчатого вала в передней части насоса установлена центробежная муфта. В момент впрыска топлива через нагнетательный клапан ТНВД игла форсунки приподнимается за счет волны давления, которая передается со скоростью звука по трубопроводам высокого давления. Необходимое время для передачи давления всегда одинаково и не зависит от частоты вращения коленчатого вала двигателя, это же характерно и для воспламенения топлива. Независимо от частоты вращения максимальное давление при сгорании достигается всегда в одинаковое время. При работе двигателя на высокой частоте вращения коленчатого вала без коррекции угла опережения впрыска происходило бы запаздывание впрыска. Поэтому с увеличением частоты вращения коленчатого вала необходимо несколько раньше производить впрыск топлива, чтобы достичь оптимального процесса сгорания. Муфта опережения впрыска топлива Опережение момента впрыска топлива (начала подачи топлива) осуществляется автоматической муфтой опережения впрыска в зависимости от частоты вращения коленчатого вала. Муфта опережения впрыска топлива состоит из двух полумуфт – ведущей 1 и  ведомой 2. Обе полумуфты подвижно соединены между собой через эксцентриковый элемент 5, состоящий из компенсирующих и регулировочных эксцентриков, которые направляются штифтом, жестко связанным с корпусом.  Внутренняя полумуфта жестко связана с кулачковым валом насоса высокого давления. К наружной полумуфте прикреплен привод ТНВД (звездочка, шестерня). Внутри муфты опережения впрыска расположены центробежные грузы 8, которые соединены с эксцентриковым элементами 5 и удерживаются в исходном положении пружинами с переменной жесткостью 7. Рис.  Муфта опережения впрыска: 1 – ведущая полумуфта (приводная шестерня); 2 – ведомая полумуфта (ступица); 3 – корпус муфты; 4 – эксцентрик регулировочный; 5 –...

Регулятор числа оборотов двигателя

Механическое регулирование числа оборотов дизельного двигателя

Применение Приемистость автомобиля с дизельным двигателем можно назвать удовлетворительной, когда двигатель постоянно реагирует на команды водителя через педаль акселератора. Кроме этого, при движении двигатель не должен стремиться к остановке. Двигатель должен при изменении положения педали акселератора плавно разгоняться или замедляться без перебоев. На ровной дороге и удерживании педали акселератора в ладанном положении скорость автомобиля должна также оставаться постоянной. Когда педаль отпускается, двигатель должен тормозить автомобиль. На дизельном двигателе для обеспечения выполнения всех этих требований имеется регулятор числа оборотов (на ТНВД). Рис. Регулятор числа оборотов двигателя Регулятор включает в себя механический (центробежный) регулятор и рычаг. Имеется чувствительное устройство управления, которое определяет положение втулки управления, определяя таким образом ход педали и, соответственно количество впрыскиваемого топлива. Есть возможность адаптации реакции регулятора к изменениям установочной точки путем изменения конструкции рычага. Функции регулятора числа оборотов дизельного двигателя 1. Подача при запуске; 2. Подача при полной нагрузке; 3. Управление крутящим моментом (положительный); 4. Регулировка оборотов при полной нагрузке; 5. Холостой ход; 6. Ход втулки управления; 7. Обороты двигателя; а — регулятор минимальных и максимальных оборотов; Ь — регулятор регулируемых оборотов. Основной задачей всех регуляторов является ограничение максимальных оборотов двигателя. В зависимости от типа регулятор также реагирует на поддержание постоянными определенных оборотов двигателя, таких как обороты холостого хода или минимальных и максимальны) оборотов двигателя в определенном диапазоне оборотов или полном диапазоне оборотов между оборотами холостого хода и максимальными оборотами. Различные типы регуляторов являются прямым результатом различных обозначений регуляторов: регулирование низких оборотов холостого хода: низкие обороты холостого хода управляются регулятором ТНВД регулирование минимальных оборотов: когда педаль акселератора нажимается полностью, максимальные обороты при полной нагрузке не должны возрастать более чем до повышенных оборотов холостого хода (максимальных оборотов), когда нагрузка убирается. При этом регулятор реагирует путем перемещения втулки управления обратно в направлении положения остановки двигателя, а подача топлива к двигателю уменьшается регулирование промежуточных оборотов: регуляторы изменяемых оборотов включают регулирование промежуточных оборотов. В определенных пределах эти регуляторы могут также поддерживать обороты двигателя между холостыми и максимальными на постоянном уровень. Это означает, что в зависимости от нагрузки, обороты двигателя изменяются в рабочем диапазоне только между nв (заданные обороты на кривой полной нагрузки и nт (.без нагрузки на двигателе). Другие функции управления выполняются регулятором в дополнение к его регулирующим возможностям: сброс или блокировка дополнительного топлива, требуемого для запуска двигателя. изменение подачи пои полной нагрузке в зависимости от оборотов двигателя (управление крутящим моментом). В некоторых случаях для реализации этих дополнительных возможностей необходима установка дополнительных модулей. Точность регулирования оборотов двигателя Параметр, используемый в качестве меры для точности регулятора при управлении оборотами двигателя при снятии нагрузки с двигателя является так называемым коэффициентом снижения оборотов (коэффициент Р) или же просто снижением оборотов. Это увеличение оборотов, выраженное в процентах, которое имеет место, когда нагрузка дизельного двигателя убирается при неизменном положении рычага управления (педали акселератора). В области управляемых оборотов увеличение оборотов двигателя не должно превышать определенное значение. Оно определяется повышенными оборотами холостого хода. Это обороты двигателя, которые имеют место когда дизельный двигатель, начиная со своих максимальных оборотов при полной нагрузке, полностью освобождается от всей нагрузки. Увеличение оборотов пропорционально изменению нагрузки и увеличивается пропорционально ей. б = (nl0 — nvo)/nv0 где...

Общий вид Lucas DPC

Общее устройство ТНВД Lucas (Лукас) DPS

Общий вид топливного насоса высокого давления Lucas DPC показан на первом рисунке, а его схема в разрезе на втором: Рис. Общий вид Lucas DPC: 1 – ступица привода; 2 – рычаг регулятора частоты вращения; 3 – рычаг холостого хода; 4 – пружина регулятора частоты вращения; 5 – автомат опережения впрыскивания; 6 – рычаг управления; 7 – дозирующий клапан; 8 – электромагнитный клапан выключения подачи; 9 – насос низкого давления; 10 – штуцер нагнетательного клапана; 11 – поршень повышенной подачи топлива; 12 – кольцо с внутренними кулачками; 13 – грузы регулятора частоты вращения; 14 – держатель грузов регулятора Рис. Схема продольного разреза ТНВД Лукас: 1 – дифференциальный клапан; 2 – поршни пускового обогатителя; 3 – толкатель (башмак); 4 – пластина-ограничитель максимальной подачи; 5 – возвратная пружина; 6 – муфта регулятора; 7 – вал привода; 8 – обойма грузов регулятора; 9 – пружина холостого хода; 10 – рычаг регулятора; 11 – рабочая пружина; 12 – автомат опережения впрыска; 13 – рычаг управления; 14 – тяга; 15 – дозирующий клапан Рекомендуем ознакомиться с электронной системой управления ТНВД Лукас, а также с устройством других моделей ТНВД на нашем сайте: Общее устройство ТНВД Бош ВЕ Общее устройство ТНВД ВП-44 Устройство топливного насоса высокого давления КамАЗ

✪Устройство автомобиля Авто⚡сайт №❶