Рубрика: Кузов автомобиля

Кузов легкового автомобиля

Общее устройство кузова автомобиля. Применяемые материалы

Несущий кузов, характерный для большинства легковых автомобилей, содержит полые элементы, изготовленные из листовой стали, на которых устанавливаются и крепятся сваркой кузовные панели. В зависимости от типа автомобиля, около 5000 сварных точек должны быть выполнены вдоль сварочных фланцев общей длиной 120…200 м. Ширина сварочного фланца составляет 10-18 мм. Другие части (передние крылья, двери, капот, крышка багажника) крепятся к опорным конструкциям кузова на болтах или с помощью точечной сварки. Существуют также каркасные и скелетные типы конструкций кузовов. В качестве материала для кузовов применяется тонколистовая сталь. Наиболее преобладающая толщина 0,75…1 мм, однако, отдельные части кузова могут иметь толщину от 0,6 до 3,0 мм. Для изготовления высоконапряженных конструктивных элементов применяется высокопрочная низколегированная листовая сталь. Некоторые детали кузова, например, бампера, молдинги, люки, спойлеры, решетки радиаторов, облицовки надколесных ниш, колпаки и др. могут  изготавливаться из пластмасс. Общая конструкция кузова легкового автомобиля показана на рисунке. Рис. Кузов легкового автомобиля: 1  – подоконная балка; 2 – передняя балка крыши; 3 – лонжерон крыши; 4 – задняя балка крыши; 5 – задняя стойка кузова; 6 – задняя панель; 7 – пол в задней части кузова; 8 – задний лонжерон; 9 – средняя стойка кузова; 10 – поперечина под задним сиденьем; 11 – передняя стойка; 12 – поперечина под сиденьем водителя; 13 – порог; 14 – надколесная ниша; 15 – поперечная балка опор двигателя; 16 – передний лонжерон; 17 – поперечина передняя; 18 — поперечина радиатора Для защиты кузова от коррозии при изготовлении кузова применяются следующие меры: снижение до минимума фланцевых соединений, острых кромок и углов устранение зон, где могут скапливаться пыль и влага выполнение отверстий для предварительной антикоррозионной обработки и обработки методом электрофореза обеспечение доступности к элементам кузова для ввода ингибиторов коррозии обеспечение вентиляции полых элементов предотвращение проникновения пыли и влаги в скрытые полости выполнение дренажных отверстий снижение до минимума зон, подвергаю­щихся воздействию ударов камней покрытие нижней части кузова и тех частей кузова, которые в наибольшей степени подвержены коррозии (двери и силовые элементы в передней части автомобиля) специальными защитными средствами Для снижения массы кузова, при сохранении его прочности, в современных автомобилях применяют высокопрочную сталь, доля которой в верхней и нижней частях кузова составляет  50…60%. Применение высокопрочной листовой стали позволяет снизить массу применяемых деталей кузова на 25%. Стальной листовой материал современных автомобилей подвергается электролитиче­скому или термическому цинкованию. Соединение отдельных деталей кузова производится с помощью лазерной сварки, обеспечивающей абсолютно гладкие швы. Фланцы, подверженные активному коррозион­ному воздействию, обрабатываются специальными пастами (поливинилхлорид или эпоксидная смола) в зоне расположения точечных швов. Перспективным направлением в развитии автомобильных кузовов является применение алюминия и в 2005 году масса алюминиевых деталей на один автомобиль в Европе составляет 130 кг. Среди новых материалов, активно завоевывающих автомобилестроение, следует назвать пеноалюминий  – чрезвычайно легкий, жесткий, с высоким энергопоглощением при столкновении. Металлические пенистые структуры обладают и высокими характеристиками, обеспечивающими шумоизоляцию и термостойкость, однако стоимость деталей из такого материала выше, чем у стальных, примерно на 20%. Разработан новый материал «AAS» трехслойной структуры, способной кардинально изменить конструкцию кузова и снизить его массу до 50%. В конструкции концептуальных автомобилей компаний «Ауди» и «Даймлер-Бенц» использованы каркасы из прессованных алюминиевых профилей. Масса кузова модели «Ауди А8» за счет этого снижена до...

Применяемые при изготовлении кузова материалы

Листовая сталь Большинство кузовов в силу множества причин изготовляют из листовой стали. Важнейшими из этих причин являются: высокая прочность; деформируемость (возможность вытяжки); свариваемость (а также пригодность для опайки); окрашиваемость; достаточный срок службы при надлежащей противокоррозионной обработке; удовлетворительная стоимость. В общем случае применяются следующие листовые стали: тонколистовая, холоднокатаная спокойная сталь марки RRST 1405 по DIN 1623 (стандарт на качество), DIN 1541 (стандарт на размеры) с пределом прочности 270—350 МПа, относительным удлинением более 36%, с матовой, чистой поверхностью, толщиной 0,6—0.9 мм (поставляется с интервалом толщины 0,1 мм), используется для видовых (опрашиваемых) наружных панелей (крыша, капот, двери, боковины и т. д.); те же сорта стали, которые указаны выше, иногда тонколистовая кипящая сталь марки UST 1203 или UST 1303, т. е. худшего качества, с пределом прочности 270—410 МПа, относительным удлинением 28—32%, той же толщины, что указана выше, используется для невидовых (окрашиваемых), наружных панелей, а также деталей пола (внутренний каркас, усилители, панели пола, поперечины и т.д.); горячекатаная стальная лента по DIN 1624 (стандарт на качество), DIN 1606 (стандарт на размеры) марки ST 4 с пределом прочности 280—380 МПа, относительным удлинением более 38%, толщиной 1,5—2,5 мм и больше, используется для деталей, расположенных внизу кузова (усилители, опоры, фланцы и т. д.), особенно большой толщины. Конструкция и технология изготовления деталей должны ориентироваться на максимальную ширину поставляемой листовой стали (в настоящее время 2000 мм). Для деталей, работающих в коppoзионно агрессивной сpeдe, следует применять оцинкованную листовую сталь, учитывая, что при изготовлении деталей такая сталь не допускает больших дeформaций (изгиб, небольшая вытяжка). В особых случаях можно применять алюминированную листовую сталь. Обе поверхности стальных листов можно подвергнуть специальной обработке. Легкие металлы До сегодняшнего дня продолжаются дискуссии о целесообразности применения легких металлов в кузовостроении, так как используя их, можно существенно уменьшить вес конструкции. Как ни интересны алюминиевые кузова специальных (гоночных и спортивных) автомобилей и автобусов, тем не менее вероятность применения алюминиевого листа для массового производства легковых автомобилей мала по следующим причинам: Стоимость алюминия (как материала) почти в 3 раза больше, чем стали. Затраты на изготовление листа вследствие лучшей пластичности алюминия несколько меньше, в то же время масса листа меньше только на 30%, так как алюминий обладает меньшей прочностью, и в связи с этим приходится применять лист большей толщины. Однако автомобили продают не по весу, а увеличение стоимости материалов слишком заметно, поскольку снижение стоимости других элементов вследствие уменьшения общего веса, например, тормозов, шин и т.д., ничтожно мало, а снижение расхода топлива не сказывается на продажной цене автомобиля. Следовательно, автомобили с большим количеством алюминиевых деталей становятся существенно дороже. Вследствие меньшей прочности алюминия большинство деталей кузова, особенно элементы каркаса, должны иметь увеличенную толщину. Из-за меньшего модуля упругости жесткость, обусловливаемая формой кузова, а также его срок службы относительно малы, поэтому поглощение энергии при ударе тоже мало. Все это нежелательно с точки зрения безопасности. Чистые алюминиевые сплавы обладают достаточной коррозионной стойкостью. Однако не все детали и соединительные элементы кузова могут изготовляться из легкого металла, по меньшей мере в местах соединения алюминиевых и стальных деталей существует повышенная опасность возникновения коррозии. Последнюю можно уменьшить путем применения анодированного стального листа, но в этом случае резко возрастают затраты. Возникают трудности со сваркой...

Коэффициент светопропускания ветровых и передних боковых стекол

Техническое обслуживание (ТО) кузова автомобиля

Чтобы сохранить окраску кузова и обеспечить условия для высококачественного технического обслуживания и ремонта, требуется постоянный профилактический уход за автомобилем: уборка мойка обсушка или протирка промытых частей кузова периодическая полировка кузова Помимо этого, проверяют и подтягивают крепления кузова автомобиля, проверяют состояние дверей, дверных замков, петель, стеклоподъемников, стеклоочистителей и другое оборудование и смазывают шарнирные и другие соединения. Удаление пыли и грязи Во избежание царапин нельзя удалять пыль и грязь сухим обтирочным материалом. Автомобиль лучше мыть до высыхания грязи струей воды небольшого напора с использованием мягкой губки и автошампуня. Летом автомобиль желательно мыть в тени. Если это невозможно, то вымытые поверхности надо сразу же протирать насухо, так как при высыхании капель воды на солнце на окрашенной поверхности образуются пятна. Зимой после мойки автомобиля в теплом помещении перед выездом следует протереть насухо кузов, уплотнители дверей и капота, а также продуть замки сжатым воздухом для предохранения их от замерзания. При мойке автомобиля необходимо следить, чтобы вода не попа­ла на узлы электрооборудования в моторном отсеке, особенно на катушку зажигания и распределитель. Для сохранения блеска окрашенных поверхностей (в первую очередь у автомобилей, хранящихся на открытом воздухе) следует регулярно применять автополироли. Они закрывают микротрещины и поры, появившиеся в лакокрасочном покрытии, что препятствует возникновению коррозии под слоем краски. Полирование можно выполнять пастой ВАЗ-1 или ВАЗ-2, а затем ВАЗ-3 или аналогичными ему вручную либо электродрелью. Чтобы поверхность кузова сохраняла блеск, не следует оставлять автомобиль длительное время на солнце, допускать попадания на поверхность кузова кислот, растворов соды, тормозной жидкости и бензина и применять для мойки содовые и щелочные растворы. Детали из пластмасс надо протирать влажной ветошью или специальным автоочистителем. чтобы пластмассовые детали не потеряли блеск, не следует применять бензин или растворители. Стекла очищают мягкой льняной ветошью или замшей. Очень грязные стекла предварительно надо вымыть водой с добавлением жидкости НИИСС-4 или автоочистителем стекол. Для удаления льда со стекол и размораживания замков дверей рекомендуется применять авторазмораживатель в аэрозольной упаковке, внутрь замков можно вводить тормозную жидкость. Пыль с обивки подушек и спинок сидений следует удалять пылесосом. Для устранения жирных пятен на обивке применяют “Автоочиститель обивки”. В бачки омывателей стекол в зимнее время следует заливать водный раствор специальной низкозамерзающей жидкости НИИСС-4 или другие аналогичные составы в соответствии с рекомендациями по их применению. Устранение мелких царапин кузова Мелкую царапину, повредившую лишь окраску кузова потирают обезжиривающей жидкостью, чтобы удалить отслоившуюся краску и очистить прилегающие участки от защитной полироли, затем ополаскивают ее чистой водой. Закрашивают царапину, используя тонкую кисть. Тонкие слои краски наносят до тех пор, пока толщина окраски по­врежденной области не сравняется с ок­ружающим слоем. Краску сушат до ее полного высыхания несколько дней, затем полируют область царапины и наносят на нее восковое покрытие. Если царапина повредила металл ку­зова, вызывая ржавчину, применяют дру­гой метод ремонта. Снимают ржавчину со дна царапины твердым металлом, затем наносят грунтовку, чтобы пре­дотвратить образование ржавчины в бу­дущем. Заполняют царапину специальным наполнителем на основе целлюлозы. Прежде, чем наполнитель в царапи­не затвердеет, легко проводят тампо­ном из хлопковой ткани, смоченным целлюлозным составом, по поверхности наполнителя, чтобы его уровень нахо­дился чуть ниже окружающего слоя крас­ки. После полного отвердения наполнителя проводят окраску, по технологии описанной выше. Уход за стеклами...

Крепление дверей к кузову

Двери автомобиля

Все двери кузова рамочного типа и одинаковы по конструкции. Нижняя часть двери, т. е. ее корпус, состоит из двух штампованных панелей (наружной и внутренней), соединенных между собой путем загибки кромок и сварки. Чтобы увеличить жесткость корпуса двери, со стороны петель и подоконника приварены усилители. Верхняя часть двери представляет собой П-образную рамку, сваренную встык из двух отрезков профиля, образованного прокаткой стальной ленты на роликовом станке. Нижние концы рамки пропущены внутрь корпуса и соединены с ним с помощью твердого припоя. Применение дверей рамочного типа позволяет уменьшить толщину стоек двери и увеличить площадь дверного окна. Рис. Крепление дверей к кузову: а — разрез по петле передней двери; б — разрез по петле задней двери; 1 — щека петли, прилегающая к кузову; 2 — уплотнитель петли; 3 и 12 — держатели; 4 — винт; 5 — пластина; 6 — стойка кузова; 7 — заглушки; 8 — болты; 9 — усилитель двери; 10 — щека петли, прилегающая к двери; 11 — уплотнитель петли на двери С наружной стороны дверные рамки облицованы декоративными алюминиевыми накладками, которые крепятся к рамкам при сборке путем загибки наружной кромки. Наружная декоративная накладка подоконника двери, в которой зажат резиновый уплотнитель стекла, надета на кромку наружной панели двери и удерживается на ней пружинными держателями. Крепление двери Каждая дверь со стороны переднего торца подвешена к кузову на двух петлях. Щека 1 каждой петли, прилегающая к стойке б кузова, закреплена винтами 4, ввернутыми в пластину 5, удерживаемую внутри стойки держателем 3. Размеры держателя позволяют перемещать пластину при регулировке. Щека 10 петли, прилегающая к двери, прикреплена к ней болтами 8, которые проходят через отверстия в усилителе V двери и ввернуты в резьбовые отверстия этой щеки. Во избежание проникновения пыли внутрь передней и задней двери щека 10 петли проходит через губчатый уплотнитель 11, который удерживается приваренным к двери держателем 12. Для защиты кузова от пыли в местах крепления петель передней двери щека 1 петли проходит через приклеенный к стойке кузова губчатый уплотнитель 2, а монтажные отверстия в стойке закрыты резиновой заглушкой 7. Щеки петель стальные; изготовлены они из профиля специального проката, который разрезается. Щеки соединяются между собой пальцем. Палец смазывается через отверстие в головке щеки. Описанное крепление позволяет регулировать двери, т. е. смещать их в любом направлении: вверх, вниз, вперед, назад, внутрь и наружу. Такая регулировка обеспечивает правильное положение двери, определяемое равномерным зазором по периметру двери и отсутствием ступенек между поверхностью двери и сопряженных с ней участков кузова. Рис. Ограничитель двери (горизонтальный разрез): I — дверь в открытом положении; II — дверь в закрытом положении; 1 — ограничитель; 2 — хвостовик ролика; 3 — перемычка ограничителя; 4 — держатель пластины; 5 — пластина; 6 — скоба; 7 — винт; 8 — усилитель двери Ограничитель двери Для ограничения угла открывания и удержания двери в открытом положении каждая дверь снабжена пружинным ограничителем 1. Концы ограничителя, служащие осью его вращения при открывании двери, прикреплены к стойке кузова скобой 6, которая закреплена винтами 7, ввернутыми в пластину 5, удерживаемую на месте держателем 4, благодаря чему винты можно вывертывать полностью. Размеры держателя позволяют перемещать пластину при регулировке навески двери. При открывании...

Деление кузова по зонам повреждений

Неисправности кузова. Механические и коррозионные повреждения

Основные неисправности кузова легкового автомобиля – его механические (вмятины, пробоины, трещины) и коррозионные повреждения, разрушение лакокрасочного и противокоррозионного покрытия. Механические повреждения Механические повреждения происходят при дорожно-транспортных происшествиях и при езде на повышенных скоростях по неровным дорогам. Наиболее разрушительны повреждения кузова при фронтальных столкновениях и соударениях передней частью кузова под углом 40…45″ или сбоку. Такие столкновения, как правило, происходят между двумя движущимися автомобилями, скорости которых складываются. В этом случае кузов автомобиля разрушается, особенно его передняя часть, а действующие при этом большие нагрузки в продольном, поперечном и вертикальном направлениях передаются всем близко расположенным деталям каркаса кузова, особенно его силовым элементам. Для количественной оценки характера повреждений вследствие аварии автомобиля кузов условно разделяют на зоны. Зоны I, III, V и VII относят к левой части автомобиля, зоны II, IV, VI, VIII – к правой. Зоны I и II расположены от передней части автомобиля до оси передней подвески, зоны III и IV – от оси передней подвески до средней стойки кузова, зоны V и VI – от средней стойки кузова до оси заднего моста, зоны VII и VIII – от заднего моста до задней части автомобиля (задняя панель, крышка багажника, бампер, задняя часть крыльев и др.). Рис. Деление кузова по зонам повреждений Рис. Диаграммы распределения повреждений кузова по зонам (в процентах). На рисунке даны диаграммы распределения повреждений кузова автомобиля ГАЗ-24 “Волга” такси в результате аварий. Наибольшим повреждениям подвергаются передняя (52…53 %) и задняя (32 %) части кузова. Повреждения левой стороны в средней части кузова зафиксированы у 10 % автомобилей, а с правой стороны – у 10…16 %. Повреждения кузова приводят, как правило, к появлению различных его перекосов, которые проявляются в нарушении геометрических параметров проемов (дверей, капота, крышки багажника), лонжеронов, каркаса салона. В зависимости от сложности повреждений перекосы кузова подразделяют на 5 видов: перекос проема (нарушения геометрических параметров проемов кузова; различные комбинации перекосов боковой двери, переднего или заднего окна) перекос кузова малой сложности (повреждения с нарушением геометрических параметров проемов капота или крышки багажника (двери задка) без нарушения геометрии основания кузова, дверных и оконных проемов, за исключением зазоров между дверями и передними или задними крыльями) перекос кузова средней сложности (одновременное нарушение геометрических параметров проемов капота и крышки багажника (двери задка) или повреждение кузова с нарушением геометрических параметров передних либо задних лонжеронов без нарушения геометрии каркаса салона; для переднеприводных автомобилей учитываются перекосы только задних лонжеронов) перекос кузова повышенной сложности (одновременное нарушение геометрических параметров передних и задних лонжеронов или повреждения кузова с нарушением геометрических параметров передних и задних лонжеронов и каркаса салона либо только передних лонжеронов для переднеприводных автомобилей) перекос кузова особой сложности (повреждения с нарушением геометрических параметров передних и задних лонжеронов и каркаса салона) Перекосы кузова устраняют путем восстановления поврежденных элементов проемов, лонжеронов каркаса правкой, вытяжкой, усадкой и рихтовкой до придания им первоначальных геометрических параметров. Коррозионные повреждения кузова Коррозионные повреждения происходят из-за самопроизвольного разрушения металлов в результате химического или электромеханического взаимодействия их с внешней средой, вследствие чего они переходят в окисленное состояние и их физико-химические свойства изменяют. По механизму образования и протекания коррозионного процесса различают электрохимическую и химическую коррозию. Электрохимическая коррозия имеет место в тех случаях, когда два...

Состав, замедляющий коррозию

Противокоррозионная защита кузова

Коррозия — это процесс разрушения металла при его физико-химическом или химическом взаимодействии с окружающей средой. Кузов автомобиля имеет значительное количество замкнутых (скрытых) полостей, щелей, в которых создаются благоприятные условия для возникновения и развития коррозии, так как они плохо проветриваются и в них скапливается влага. Коррозии подвержены также днище кузова, нижние части дверей, стоек, соединения деталей, в том числе места точечной сварки. Часто и сварные швы не имеют достаточной герметизации и являются очагами ускоренной коррозии. В целях защиты от коррозии металл кузовов современных автомобилей покрывается односторонним или двухсторонним слоем цинка. Однако во время проведения точечной сварки при изготовлении кузова в местах сварки тонкий слой цинка сгорает, в то же время оголенная сталь образует в местах сварки гальванический элемент с цинком, что приводит к коррозии металла кузова. Исследования защитной способности заводских покрытий эксперты коррозии автомобилей из института коррозии (Швеция) и практический опыт показывают, что после трех лет эксплуатации следы коррозии можно обнаружить на всех автомобилях, независимо от фирмы производителя. Эти факты свидетельствуют о том, что в процессе эксплуатации автомобиля необходимо проводить противокоррозионную обработку кузова. Разрушение кузова автомобиля при годичной эксплуатации без осуществления про­филактической антикоррозионной защиты может наступить через 4…5 лет. Факторы, влияющие на скорость коррозии металла под защитным покрытием, многочисленны и разнообразны: повреждения дорож­ными абразивными выбросами воздействие воды и соли, воздействие продуктов сгорания топлива температурные перепады периоди­ческий характер эксплуатации автомобиля контакт разнородных металлов и т.д. Для днищ и кузовов автомобилей опаснейшим фактором является воздействие растворов электролитов, образующихся при растворении в талой и дождевой воде солей и агрессивных газов (продуктов сгорания топлива и дея­тельности промышленных пред­приятий, образующих в контакте с водой электролиты). Установлено, что при прочих равных условиях в городской местнос­ти износ днища автомобилей проте­кает в 3…5 раз быстрее, чем в сель­ской. В этой связи возникает необ­ходимость в регулярной профилак­тической антикоррозионной защите автомобиля, которая может быть осуществлена с помощью различ­ных химических средств. Защитные покрытия могут быть использованы как для восстановления старого ан­тикоррозионного покрытия, так и для дополнительного нанесения на соответствующие заводские. Изолировать металл от доступа кислорода очень трудная задача. Основная концепция систем защиты от коррозии – это изолирование поверхности металла от доступа электролита, например, воды. Для изолирования металлов от внешних воздействий применяют специальные антикоррозионные составы, которые можно условно разделить на три поколения. Первое — консервационные, изготовленные на основе загущенных масел с добавками ингибиторов коррозии. На вертикальных поверхностях (двери, пороги) эти материалы держатся недолго. Они стекают вниз, оставляя пленку, нестойкую к механическим воздействиям и проницаемую для паров воды. Второе — пленкообразующие ингибированные нефтяные составы (ПИНС), хорошо сцепляющиеся с защищаемым металлом. Воскообразная пленка механически изолирует его от воздействия атмосферы, а ингибиторы блокируют коррозию. Иногда препараты дополнительно содержат модификаторы ржавчины. Они восстанавливают металл, превращая продукты коррозии в дополнительную защитную пленку толщиной около 100 мкм, схожую с грунтом. Некоторые фирмы предлагают составы, в основу которых введен алюминиевый наполнитель. Наполнитель увеличивает ее абразивостойкость и затрудняет проникновение агрессивных ионов (например, хлора) к защищаемому металлу.Кроме того, в последнее время появились препараты с цинковым наполнителем. Его частички, повышая абразивостойкость покрытия, способствуют замедлению электрохимической коррозии. Поскольку электродный потенциал железа больше (положительнее), цинк разрушается вместо стали. Третье поколение – материалы, вместо летучих нефтяных...

Классификация кузовов и рам, требования к ним

Классификация кузовов и рам, требования к ним

Рамы, а часто и кузова представляют собой несущие системы, воспринимающие весовые и ударные — перегрузочные нагрузки. Кузов автомобиля служит для размещения груза, пассажиров и водителя и для защиты их от климатических воздействий. Из всего многообразия классификационных признаков отметим только самые основные. Несущие системы классифицируют в зависимости от того, что воспринимает весовые нагрузки: рама (кузов разгруженный); кузов — несущий кузов (каркасный, с несущим основанием, панельный); кузов, объединенный с рамой — интегральная несущая система. Рамы делят на: лонжеронные (периферийные, Х-образные, лестничные, с Х-образными поперечинами) хребтовые — центральные Кузова по назначению делят на: пассажирские (автобусные и легковых автомобилей) грузовые грузопассажирские специальные Кузова легковых автомобилей классифицируют в зависимости от числа дверей и конструкции крыш: закрытые (седан, лимузин, купе и др.) открытые (фаэтон, кабриолет и др.) комбинированные (ландо, тарга и др.). Кроме того, выделяют однообъемные, двухобъемные, трехобъемные кузова. Название одного и того же кузова в разных странах может быть разным. Кузова грузовых автомобилей классифицируют на: кузова общего назначения (бортовая платформа) специализированные (самосвалы, фургоны, цистерны, контейнеровозы и т.д.) Основные требования к кузовам и рамам следующие: минимальная масса при долговечности, включая и коррозионную стойкость, соответствующей сроку службы автомобиля; достаточная для работы агрегатов и узлов автомобиля жесткость; форма рамы (кузова) должна обеспечивать удобство монтажа агрегатов, малую высоту центра тяжести и малую погрузочную высоту; форма и конструкция кузова должны обеспечивать необходимые комфортабельность, травмобезопасностъ, а также требования моды. Кроме того, к кузовам и рамам, как и к остальным механизмам и системам автомобиля, предъявляют также общие требования: обеспечение минимальной массы высокая надежность минимальное обслуживание технологичность Рассмотрим, какими конструктивными мероприятиями обеспечивается выполнение требований к кузовам и рамам. Минимальная масса кузовов легковых автомобилей и кабин грузовых автомобилей обеспечивается применением мягкой низкоуглеродистой (из-за глубокой штамповки) листовой стали, толщина которой обычно уменьшена до 0,8 мм. Рамы изготавливают из листовой стали толщиной 2…4 мм (рамы больших легковых автомобилей), 5…12 мм (лонжероны рам автобусов и грузовых автомобилей), 4…8 мм (поперечины рам автобусов и грузовых автомобилей). Иногда для снижения массы рамы грузовых автомобилей изготавливают из легированной листовой стали. Повышение коррозионной стойкости и, следовательно, долговечности кузовов легковых автомобилей обеспечивается применением листовой стали с добавлением меди либо оцинкованной. Ненагруженные панели кузова изготавливают из пластмасс. Иногда кузова легковых автомобилей и кабины специальных грузовых автомобилей изготавливают из алюминиевого листа или из пластмасс. Для наружных панелей кузовов автобусов все чаше применяют алюминиевые листы. Достаточная жесткость рам в основном обеспечивается при изгибе лонжеронами (при кручении также и поперечинами) необходимой высоты и толщины. Для повышения жесткости кузовов используют закрытые или открытые профили, образующие каркас, либо выштампованные или дополнительные ребра. Травмобезопасность кузова (внутренняя) обеспечивается уменьшением инерционных нагрузок при наездах спереди и сзади (например, создание более жесткого салона при менее жесткой передней и задней частях легкового автомобиля), ограничением перемещения людей при авариях (применение ремней и подушек безопасности), устранением травмоопасных деталей, сохранением жизненного пространства при опрокидывании. Травмобезопасность кузова (внешняя) обеспечивается совершенствованием бамперов, устранением травмоопасных деталей и выступов, применением боковых и задних ограждений на кузовах грузовых автомобилей, а в некоторых случаях применением защитных приспособлений, уменьшающих травмы пешеходов при наезде на них.

Комплект инструментов и приспособлений для ремонта кузова

Ремонт дефектов (деформированных поверхностей) кузова

В зависимости от степени повреждения или коррозионного разрушения кузовной детали предусматриваются следующие виды ремонта при снятых узлах и деталях, препятствующих проведению рихтовочных, сварочных и окрасочных работ: ремонт 0 – устранение повреждений на лицевых поверхностях кузова без повреждения окраски ремонт 1 – устранение повреждений в легкодоступных местах (до 20 % поверхности детали) ремонт 2 – устранение повреждений со сваркой, или ремонт № 1 на поверхности детали, деформированной до 50 % ремонт 3 – устранение повреждений со вскрытием и сваркой, частичной реставрацией детали до 30 % ремонт 4 – устранение повреждений с частичной реставрацией детали на поверхности свыше 30 % частичная замена – замена поврежденной части детали кузова ремонтной вставкой (из номенклатуры запасных частей или изготовленной из последних) замена – замена поврежденной детали кузова деталью из запасных частей крупноблочный ремонт – замена поврежденных частей кузова блоками деталей от выбракованных кузовов с разметкой, отрезкой, подгонкой, вытяжкой, рихтовкой, сваркой последних Повреждения кузова могут быть самыми различными, поэтому правила ремонта должны быть индивидуальными. Почти во всех случаях необходимо снимать некоторые детали, чтобы обнаружить повреждения, выправить и выверить каркас кузова. При серьезных повреждениях убирают внутреннюю обивку, чтобы облегчить измерение, контроль и установку гидравлических или винтовых домкратов для устранения перекосов и прогибов. Деформированные поверхности ремонтируют путем механического или термического воздействия на металл, а также заполнением вмятин быстрозатвердевающими пластиками или припоем. Правка кузова механическим воздействием предусматривает работы по растяжке, выдавливанию и рихтовке деформированных частей кузова для придания им первоначальных форм и конфигураций. Правку детали кузова выполняют в горячем и холодном состоянии. Для правки и рихтовки кузова применяют комплект инструментов и приспособлений, в который входят ручные инструменты, гидравлические цилиндры с насосом и приспособления для вытяжки поврежденных мест. Рис. Комплект инструментов и приспособлений для ремонта кузова: а – молотки; б – киянки; в – специальные оправки; г – поддержки Рис. Комплект приспособлений для правки кузова: 1 – оправка для вытягивания вогнутых деталей; 2, 3 – самозакрепляющие гидравлические зажимы; 4 – оправка с зубцами для захвата; 5 – гидравлическая струбцина; 6 – двойной захват; 7 – устройство для правки кузова; 8 – гидравлический насос; 9 – натяжной цилиндр с захватами; 10 – натяжной цилиндр с вытягивающим устройством Рис. Устранение выпучин в панелях кузова без нагрева: а – участок панели с выпучиной; б – схема направления удара молотком; 1 – выпучина; 2 – панель; 3 – участки панели, подлежащие растягиванию рихтовкой с помощью молотка; 4 – кривизна панели после правки выпучины Устранение выпучин в холодном состоянии основано на растяжении металла по концентрическим окружностям или по радиусам от выпучины к неповрежденной части металла. При правке образуется плавный переход от наиболее высокой части выпучины к окружающей ее поверхности панели. Для этого в направлении от металла, окружающего выпучину, к выгнутой части поверхности наносят молотком серию последовательных ударов по кругу. По мере приближения молотка к границе выпучины силу удара уменьшают. Чем больше число окружностей на панели при рихтовке, тем плавнее получится переход от выпучины к неповрежденной части металла. Правку деформированных поверхностей выполняют с помощью киянки и фасонных плит или наковален специального профиля. Рис. Восстановление формы деталей с помощью рихтовочного инструмента Правку в нагретом состоянии производят двумя...

Конструкции лонжеронных (а, в), хребтовых (г) и комбинированных (д, е) рам

Несущая система

Несущая система — важнейший элемент любого ТС. Она воспринимает все нагрузки, действующие на машину. Кроме того, несущая система является остовом ТС, к ней скрепятся все основные агрегаты и узлы (двигатель, механизмы трансмиссии, движитель через подвеску и т. д.). Несущая система любого ТС должна быть достаточно прочной и жесткой при наименьшей массе, обладать высокой надежностью и необходимой технологичностью в производстве, быть достаточно коррозионностойкой, способствовать повышению проходимости машины и понижению ее центра тяжести, позволять наиболее удобно и экономно размещать и закреплять все монтируемые на ней агрегаты и узлы, а также допускать значительные ходы подвески. Несущие системы колесных машин должны также допускать поворот управляемых колес на большие углы. Кроме общих требований к несущим системам отдельных типов ТС могут предъявляться дополнительные (специальные) требования. Например, необходимо, чтобы кузова легковых автомобилей имели форму, создающую минимальное сопротивление воздуха во время движения, и способствовали обеспечению безопасности и комфорта для водителя и пассажиров, а корпуса военных бронированных машин были пуле- и снарядостойкими. Различают следующие типы несущих систем ТС: рамы, корпуса, кузова, металлоконструкции прицепов и полуприцепов. Рамы в качестве несущих элементов используются в основном на грузовых автомобилях общетранспортного и многоцелевого назначения, колесных тягачах и длиннобазных шасси, а также на тракторах и ТС со специальными движителями. Кроме того, рамы имеют некоторые автобусы, гусеничные транспортеры, тягачи и легковые автомобили высшего класса. Рамы относительно просты по конструкции, технологичны в производстве и ремонте, универсальны (например, на одну и ту же раму можно установить различные кузова). По конструкции рамы подразделяются на три типа: лонжеронные, хребтовые и комбинированные. Наиболее широко распространены лонжеронные рамы (рис. а—в), состоящие из двух продольных балок (лонжеронов), нескольких поперечных балок (траверс), местных усилителей (там, где это необходимо) и переходных элементов (косынки, накладки и др.). Лонжероны чаще всего представляют собой тонкостенные балки открытого поперечного сечения. Типичными сечениями являются швеллер (см. рис. а), двутавр и Z-образный профиль (рис. в). Иногда лонжероны имеют замкнутый профиль поперечного сечения (прямоугольник или квадрат). У наиболее распространенных лонжеронов швеллерного типа отношение высоты поперечного сечения к ширине полки составляет 2,8…3,5, а толщина стенки — 5… 10 мм. Балки лонжеронов обычно штампуют из стального листа, реже выполняют из стандартного проката. Штампованные лонжероны легче и могут иметь переменный профиль по длине рамы (см. рис. а), благодаря чему достигается их повышенная равнопрочность. У большинства рам грузовых автомобилей наибольшее сечение лонжерона находится в средней части, а наименьшее — по краям. Рис. Конструкции лонжеронных (а, в), хребтовых (г) и комбинированных (д, е) рам Поперечины, соединяющие лонжероны друг с другом, перпендикулярны к ним (см. рис. а, в) или имеют в плане Х-образную форму (см. рис. б). Их сечения могут быть открытыми или замкнутыми. Как и лонжероны, поперечины обычно штампуют из стального листа и устанавливают по мере возможности регулярно в местах крепления кронштейнов рессор, двигателя и топливных баков, в местах установки оси балансирной тележки и т. д. В рамах автомобилей общетранспортного назначения высота профилей поперечин близка к высоте лонжеронов, что приближает эти конструкции к рамам плоского типа. С увеличением грузоподъемности ТС высота профилей лонжеронов существенно возрастает. Для установки агрегатов используются объемы, заключенные между лонжеронами в пределах их высоты. Поперечины в этом случае уже не выполняются равновысокими с...

Основные размеры для проверки точек крепления агрегатов

Геометрические параметры кузова и их восстановление

При восстановлении кузовов легковых автомобилей используют геометрические параметры кузова, которые даются в инструкциях по эксплуатации автомобилей или в виде листов контроля для различных моделей автомобиля, имеющихся в базе данных современных стендов для контроля и правки кузовов. Рис. Основные размеры для проверки точек крепления агрегатов (ВАЗ-2105): 0 – базовая линия; 1 – верхнее крепление радиатора; 2 – крепление картера рулевого механизма и маятникового рычага; 3 – ось педалей тормоза и сцепления; 4 – центр рулевого механизма; 5 – центр колеса; 6 – крепление амортизаторов задней подвески; 7 – центр заднего технологического отверстия центрального усилителя пола багажника; 8 – заднее крепление глушителя выпуска газов; 9 – переднее крепление глушителя; 10 – крепление поперечной штанги задней подвески; 11 – ось задних колес; 12 – оси болтов крепления верхних продольных штанг задней подвески; 13 – оси болтов крепления нижних продольных штанг к кронштейнам кузова; 14 – крепление кронштейнов нижних продольных штанг; 15 – центр заднего технологического отверстия переднего лонжерона пола; 16 – центр технологического отверстия переднего лонжерона пола; 17 – центр колеса; 18 – точки крепления поперечины передней подвески; 19 – крепление стабилизатора поперечной устойчивости; 20 – нижнее крепление радиатора; 21 – ось автомобиля; 22 – верхнее крепление радиатора; 23 – ось передних колес; 24 – крепление задней подвески двигателя; 25 – крепление опоры карданного вала; 26 – крепление амортизаторов задней подвески Кроме общих данных по креплению агрегатов заводами-изготовителями даются контрольные размеры кузова по проемам и относительного положения основных деталей. Рис. Контрольные размеры по проему ветрового стекла Рис. Контрольный размер, определяющий положение средней и задней стоек Для контроля геометрии точек крепления узлов шасси, а также для выполнения сложного ремонта с одновременным контролем, используют специальные стенды, состоящие из рамы и мерных линеек. Стенд состоит из двух основных частей: платформы, на которой закрепляют кузов и силовых стоек. На таком стенде растягивать кузов с любой стороны, под любым углом, моделируя картину удара в обратном направлении. Обычно автомобиль закрепляют на платформе захватами за отбортовку порогов. Рис. Измерительная система контроля геометрии кузова Рис. Стенд для контроля и правки основания кузова Правка кузова происходит в следующей последовательности: в необходимом месте деформированной детали закрепляют захват той или иной конструкции и цепью соединяют его с платформой и силовой стойкой. Силовая стойка под действием гидравлики тянет цепь с зажимом на себя, постепенно выправляя поврежденную часть кузова. Управление силовыми стойками осуществляется с помощью дистанционного пульта для безопасности работающих. Автомобиль устанавливают на стенд. Геометрию кузова определяют по контрольным точкам крепления агрегатов и восстановительным точкам кузова. Все большее распространение на предприятиях автосервиса находят стенды для проверки и правки кузовов, оборудованные компьютером и укомплектованные специальной измерительной системой. Измерительная система включает перемещающуюся по всей длине кузова арку, которая оснащена подшипниковыми измерительными насадками, способными передвигаться по высоте и ширине. Такие стенды имеют базу данных по наиболее распространенным моделям кузовов для сравнения с измеряемыми значениями. Использование измерительной системы позволяет отображать на экране дисплея базовые точки кузова. При вытяжке кузова на экране видно, в каком направлении необходимо производить правку кузова.

Кондиционирование воздуха. Система отопления и вентиляции. Кондиционер

Правильное кондиционирование воздуха в салоне уменьшает усталость водителя и поэтому является важным элементом безопасности. Воздухообмен, подогрев и охлаждение воздуха являются непременными условиями создания комфорта в салоне. Кроме того, система отопления и вентиляции должна устранять запотевание окон при сильных колебаниях температуры и влажности воздуха. Выполнить перечисленные задачи в постоянно изменяющихся условиях движения автомобиля при очень различных требованиях и чувствительности пассажиров к комфорту очень трудно. В связи с этим ниже рассмотрены важнейшие принципы конструирования системы отопления и вентиляции, так как они оказывают существенное влияние на конструкцию кузова. Система отопления и вентиляции и кондиционер (вентиляция, отопление, охлаждение, контроль влажности) различаются между собой. Требования, предъявляемые к системе вентиляции и отопления Микроклимат салона определяют следующие факторы: поступление свежего воздуха, в основном для поддержания в салоне требуемого количества кислорода; скорость перемещения воздуха в салоне и его распределение; температура воздуха в салоне; относительная влажность воздуха; загрязненность воздуха (пыль, запахи, отработавшие газы); температура стенок, ограничивающих салон. Согласно общим требованиям к системам вентиляции минимальное количество поступающего воздуха на одного человека должно составлять 0,5 м3/мин, т. е. 2—2,5 м3/мин, для четырех-, пятиместного автомобиля, в котором заняты все места, независимо от того, стоит автомобиль на месте или движется. Обеспечить прохождение достаточного количества воздуха через салон за счет динамического напора можно только при движении автомобиля с большой скоростью, поэтому необходимым элементом системы является вентилятор. В действительности, чтобы обеспечить удовлетворительную вентиляцию в солнечный летний день, поступление воздуха должно быть существенно большим, чем указано выше, а именно: 4—6 м3/мин для небольших, и 8—10 м3/мин для больших автомобилей. Во избежание неприятного ощущения сквозняка средняя скорость поступления воздуха не должна превышать 0,5 м/с. Кроме того, расположение отверстий, предназначенных для поступления воздуха, должно быть согласовано с положением отверстий выхода воздуха таким образом, чтобы в салоне автомобиля при любой скорости существовало небольшое избыточное давление, предотвращающее проникновение в салон отработавших газов, пыли и т. д. При закрытых окнах через вытяжные отверстия удаляется только 50—70% воздуха, поступающего в салон, а остальное количество его просачивается через неподдающиеся контролю дефекты уплотнений окон, дверей и других элементов. Требуемая малая «средняя скорость поступления воздуха» (в некоторых зонах она может быть больше среднего значения) должна достигаться путем соответствующего распределения общего потока воздуха. Напомним, что забор воздуха должен осуществляться в зоне избыточного давления, а выброс воздуха — в зоне разрежения. Хорошего распределения воздуха можно добиться только путем правильного размещения многочисленных регулируемых отверстий для поступления воздуха в салон. Эти отверстия, расположенные вдоль панели приборов, предназначены для регулирования количества и направления потока воздуха, поступающего в салон, в зависимости от условий эксплуатации автомобиля. В любом случае необходимо наличие следующих потоков: потока воздуха вдоль боковин, который может направляться через дверные каналы назад (боковые дефлекторы); прямого потока свежего воздуха по центру салона автомобиля, с поступлением воздуха примерно на уровне пруди (центральные дефлекторы); потока воздуха в зону ног и к ветровому стеклу (по обеим сторонам автомобиля), при низкой температуре окружающей среды этот поток должен хорошо прогреваться; в боковые и центральные дефлекторы также должен подаваться теплый воздух. Упоминавшаяся ранее скорость воздушного потока, поступающего в салон, оказывает влияние не только на ощущение сквозняка, но и на восприятие температуры. Вследствие охлаждения поверхности тела в результате...

Газовая горелка

Сварка кузовных деталей

Многие повреждения кузовов устраняют, используя газовую, ручную электродуговую, полуавтоматическую электродуговую в среде защитного углекислого газа, контактно-точечную и аргонно-дуговую сварку. Газовая сварка применяется при ремонте кузовов для выполнения прихваток, нанесения латунных припоев в местах концентрации напряжений и ряда других операций. Недостатки газовой сварки – значительные коробления свариваемых деталей, их перегрев и трудоемкость доводки поверхности. При газовой сварке используется газовая горелка, в которой смешиваются в определенных пропорциях кислород и ацетилен, давая при воспламенении пламя высокой температуры. Оба газа поступают по шлангам от газовых баллонов через редукторы, снижающие давление. Инжекторная горелка работает следующим образом. При открытии вентиля 9 для зажигания пламени кислород под давлением 50 …400 кПа (в зависимости от типа горелки) через трубку 3 и осевой канал инжектора с большой скоростью подается в смесительную камеру, создавая разряжение в канале. Благодаря этому горючее, поступающее к ниппелю под относительно малым давлением, подсасывается (инжектируется) в корпус горелки и далее, проходя снаружи инжектора, попадает в смесительную камеру. Образовавшаяся в смесительной камере горючая смесь, состав которой регулируют вентилями, выходит из горелки через мундштук и поджигается. Рис. Газовая горелка: 1 – ниппель подачи кислорода; 2 – ниппель подачи горючего; 3 – трубка; 4 – корпус горелки; 5 – наконечник; 6 – мундштук; 7 – смесительная камера; 8 – инжектор; 9 – кислородный вентиль Пламя направляется на свариваемый участок. когда металл плавится, к нему подносится стальной пруток, конец которого также расплавляется. С помощью прутка достигается необходимая толщина соединения в месте сварки. В процессе сварки газовую горелку передвигают вдоль обрабатываемой поверхности и одновременно подают пруток. Горелку располагают под наклоном вдоль оси сварного шва таким образом, чтобы пламя было направлено влево. Конец пламени удерживают на расстоянии около 1 мм от поверхности расплавленного металла. Перемещая горелку справа налево, наконечник наклоняют в сторону выполненного сварного шва, а струей пламени прогревают линию сварки. Сварку выполняют сплошным или точечным швом. Сварку точечным швом используют в качестве предварительной операции, предназначенной для прихватки двух соединяемых кромок. Рис. Положение сопла горелки относительно сварного шва Ручная электродуговая сварка широкого применения при ремонте кузовов легковых автомобилей не находит, так как получить качественный сварной шов при соединении стальных листов толщиной 0,7…1,0 мм не представляется возможным. Однако для некоторых силовых элементов основания кузова с толщиной металла более 1 мм этот вид сварки может использоваться. Электродуговая сварка более доступна из-за простоты процесса и оборудования и дешевле газовой. Кроме того, она вызывает незначительные коробления свариваемого металла, причем только в зоне сварного шва. Качество сварного шва определяется диаметром электрода и силой тока, которые выбирают в зависимости от толщины соединяемых деталей. Перед сваркой кромки соединяемых деталей тщательно подгоняют друг к другу, а затем детали прихватывают вдоль шва. Силу тока для прихватки принимают несколько большую, чем для непрерывной сварки. После зажигания дуги регулируют силу тока короткого замыкания, пока она не станет на 15…20 % больше требуемой силы рабочего тока. В процессе сварки поддерживают по возможности короткую дугу, устанавливая электрод под углом 10…15° к вертикали и продвигаясь вдоль шва без колебаний. Сварку, как правило, ведут слева направо. При сварке металл электрода подается к свариваемой детали каплями, которые легче присоединяются к положительному полюсу, поэтому сварку производят на обратной полярности,...

✪Устройство автомобиля Авто⚡сайт №❶