Рубрика: Система зажигания

Угол замкнутого состояния контактов прерывателя

Неисправности прерывателя-распределителя

Детали прерывателя-распределителя подвергаются механическому изнашиванию под действием инерционных нагрузок вследствие большой частоты колебаний рычажка прерывателя (несколько тысяч колебаний в минуту), а контакты прерывателя разрушаются под действием искрения и дугового разряда, возникающих в между контактном пространстве. В результате изнашивания изменяются размеры и зазоры сопряженных деталей прерывателя-распределителя. Износ граней кулачка и его биение вследствие износа втулок валика нарушают нормальное чередование искр в свечах зажигания и перебои в работе двигателя. Износ оси подвижного контакта и уменьшение упругости пружины прерывателя приводят к увеличению зазора между контактами. Искрение, а иногда и дуговой разряд объясняются возникновением э. д. с. самоиндукции в обмотке низкого напряжения катушки зажигания, достигающей 200 — 300 в, которая неполностью гасится конденсатором. В результате искрения между контактами возникает явление пережога металла, приводящее к образованию на одном контакте углубления, на другом — возвышения. Кроме того, искрение сопровождается окислением или обгоранием контактов. Нормальный зазор между контактами прерывателя для большинства современных двигателей составляет 0,30—0,40 мм. При проверке контактов прерывателя их поверхности очищают от следов пыли, масла и сажи. Обгоревшие контакты защищают гибкой абразивной пластинкой или мелкой стеклянной шкуркой зернистостью 100. Не следует при этом добиваться полного удаления неровностей на поверхности контактов. Небольшие неровности, не нарушающие нормальной работы прерывателя, допустимы. После очистки контактов их протирают чистой тряпкой, смоченной бензином, проверяют величину зазора между ними и при необходимости регулируют его вращением эксцентрикового винта стойки неподвижного контакта. Рис. Угол замкнутого состояния контактов прерывателя Для проверки величины зазора часто пользуются щупом. При этом не исключены ошибки вследствие возможного отжатая подвижного контакта. Кроме того, определяя зазор щупом, фиксируют величину зазора лишь по выступающим частям контактов, не учитывая изменений, вызванных выгоранием поверхности контактов. Этот метод контроля не учитывает также возможных отклонений величин зазора, возникающих из-за неравномерного износа кулачка, втулки и валика привода и возможного ослабления пружин подвижного контакта. Поэтому величину зазора между контактами целесообразнее проверять на работающем Двигателе при помощи электроизмерительных приборов по углу замкнутого состояния контактов. Углом замкнутого состояния контактов называют угол поворота кулачка 1, соответствующий периоду нахождения контактов 2 и 3 в замкнутом состоянии. При нормальном зазоре между контактами размыкание их при повороте кулачка будет происходить на участке А—Б, что соответствует углу ар разомкнутого состояния контактов. При дальнейшем вращении кулачка в пределах угла а3 на участке Б—В они будут находиться в замкнутом состоянии. При износе текстолитовой подушечки молоточка (рычажка прерывателя) или самих контактов зазор между ними увеличивается. Схема изменения угла замкнутого состояния контактов при увеличенном зазоре показана на рисунке. С увеличением зазора угол аэ замкнутого состояния контактов уменьшается, что соответствует участку Б1 — В1 а угол разомкнутого состояния ар увеличивается (участок A1 — B1). Этот способ проверки зазора между контактами основан на изменении средней силы тока, протекающего через замкнутые контакты прерывателя. Силу тока измеряют специальным амперметром (указателем угла замкнутого состояния контактов) на приборе НИИАТ Э-5, включенным последовательно с контактами прерывателя и параллельно обмотке низкого напряжения катушки зажигания. Принципиальная схема включения прибора показана на рисунке. Последовательно с измерительным прибором 1 включен селеновый выпрямительный вентиль 2 и потенциометр (переменный резистор) 3. Величина тока, а следовательно, и отклонение стрелки прибора зависят только от величины угла, при котором контакты испытываемого прерывателя-распределителя 4 остаются в замкнутом состоянии...

Коммутатор зажигания автомобиля

Назначение Коммутатор зажигания предназначен для управления током первичной обмотки(ок) катушки зажигания по сигналам датчика синхронизации, или ЭБУ. Принцип работы автомобильного коммутатора зажигания Сигнал от датчиков вращения очень слабый и для использования в системах управления, его необходимо сформировать и усилить. Кроме этого различные типы датчиков дают сигналы аналогового типа или в неудобной для использования форме. Для управления током первичной обмотки катушки зажигания разработаны электронные устройства, позволяющие производить переключения (коммутацию) с высокой скоростью. Сигнал с коммутатора подается на первичную обмотку катушки зажигания. Рис. Фото коммутатора и осциллограмма управляющих импульсов. Рис. Фото коммутатора и осциллограмма управляющих импульсов. Коммутатор может быть и двухканальным, управляя сразу двумя катушками зажигания. Рис. Фото коммутатора и осциллограмма сигналов ЭБУ. Коммутатор может выполнять и более сложную роль. Рассмотрим пример на схеме управления а\м ФОРД Скорпио EEC 4. На рисунке приведена схема такой системы зажигания. Такой прибор можно даже назвать модулем зажигания. Расположен он на распределителе зажигания. От датчика Холла, расположенного в распределителе, в модуль поступает РIР (Profile Ignition Pickup) сигнал. Рис. Схема системы зажигания автомобиля ФОРД. Он обрабатывается и в виде частотного сигнала 10-15 Гц передаётся в ЭБУ двигателем. В ЭБУ производится перерасчёт на поправочные коэффициенты и возвращает сигнал SPOUT (SPark OUTput) обратно в модуль TFI. Частота такого сигнала 10-15 Гц, но форма импульсов другая. На холостом ходу PIP сигнал имеет частоту 25-35 Гц, a SPOUT сигнал — частоту 40-45 Гц, который и управляет выходным каскадом коммутатора. Осциллограммы входных и выходных сигналов TFI модуля приведены на рисунке. Рис. Осциллограммы при 3000 об\мин. Расположение Коммутатор может быть совмещённым с ЭБУ двигателем. В таком случае управляющий сигнал с ЭБУ идёт непосредственно на катушку зажигания. Если коммутатор конструктивно выполнен отдельно, то он может быть установлен непосредственно рядом с катушкой зажигания (VASS); отдельно установленным на металлической поверхности для хорошего теплоотвода (крыло или перегородка подкапотного пространства) (ФОРД); рядом с блоком управления (VW Пассат); на распределителе зажигания (ФОРД) и т.п. Неисправности Обычно выход из строя электрической части происходит из-за бросков напряжения или эрозии в разъёме. Перегрузка и выход из строя из-за закорачивания первичной обмотки катушки зажигания или выхода из строя высоковольтной части. Методика проверки В начале необходимо проверить наличие питающего напряжения на выводах коммутатора (причем не только вольтметром, но и при помощи нагрузки). Убедиться в наличии правильного входного сигнала на коммутатор (осциллограмма). Выходной сигнал с коммутатора проверяется автомобильным осциллографом или обычной а\м лампочкой. Если сигнал возрастает от 0 до питающего напряжения, то лампочка подсоединяется между «+» и сигнальным выводом (отсоединить от катушки зажигания). Лампочка должна мигать при вращении двигателя стартером. Необходимо помнить, что коммутаторы, используемые с датчиками генераторного типа нельзя использовать в системах с датчиком Холла и наоборот. Ремонт Обычно ремонт невозможен.

Распределитель зажигания

Распределитель зажигания (трамблер)

Прерыватель-распределитель зажигания — механизм, определяющий момент формирования высоковольтных импульсов в системе зажигания и используется для распределения электрического зажигания по цилиндрам карбюраторных и ранних инжекторных бензиновых двигателей внутреннего сгорания. Распределитель зажигания типа Р107 предназначен для прерывания тока низкого напряжения в цепи катушки зажигания, распределения импульсов тока высокого напряжения по свечам цилиндров двигателя и обеспечения требуемого момента зажигания смеси в зависимости от числа оборотов и от нагрузки двигателя. Распределитель установлен над головкой блока цилиндров двигателя в специальной втулке и закреплен в ней болтом при помощи пластины октан-корректора. Распределитель зажигания состоит из: прерывателя тока низкого напряжения распределителя тока высокого напряжения центробежного и вакуумного регуляторов опережения зажигания октан-корректора Приводной вал 1 распределителя соединен с валиком масляного насоса и от него приводится во вращение. Прерыватель распределителя состоит из стальной пластины 14 с неподвижным контактом 20, рычажка 18 прерывателя с подвижным контактом 19 и четырехгранного кулачка 4, который вращается от вала 1 распределителя и размыкает контакты гранями, набегающими на текстолитовую подушечку 21 рычажка. Поверхность кулачка смазывается пропитанным в масле фильцем 24, укрепленным на пластине прерывателя. Зазор между контактами прерывателя регулируется поворотом эксцентрика 23, установленного на пластине прерывателя. Зазор между контактами прерывателя равен 0,35—0,45 мм; усилие натяжения пружины рычажка 400—600 Г. Параллельно контактам прерывателя включен конденсатор 22 емкостью 0,17—0,25 мкф, укрепленный на корпусе распределителя. Рис. Распределитель зажигания: 1 — приводной вал; 2 — грузик; 3 — клемма низкого напряжения; 4 — кулачок; 5 — контактная пластина бегунка; 6 — крышка; 7 — пружина контактного уголька; 8 — контактный уголек; 9 — бегунок; 10 — защелка; 11 — пружина грузика, 12 — подшипник; 13 — пластина октан-корректора; 14 — пластина прерывателя; 15 — диафрагма; 16 — пружина; 17 — тяга; 18 — рычажок прерывателя; 19 — подвижный контакт; 20 — неподвижный контакт; 21 — текстолитовая подушечка; 22 — конденсатор; 28 — эксцентрик; 24 — фильц; 25 — масленка; 26 — регулировочные гайки Валик распределителя вращается в двух скользящих подшипниках 12, запрессованных в хвостовике корпуса распределителя. Подшипник смазывается колпачковой масленкой 25. Распределитель тока высокого напряжения состоит из бегунка (ротора) 9 с контактной пластиной 5 и крышки 6 с электродами, которые соединяются проводами с катушкой и свечами зажигания. В центральный электрод крышки распределителя вмонтирован комбинированный уголек 8, состоящий из контактного уголька и сопротивления, служащего для подавления помех радиоприему. Контактный комбинированный уголек под действием пружины 7 прижат к контактной пластине бегунка. Бегунок распределителя, вращаясь, передает ток высокого напряжения от катушки зажигания через центральный электрод крышки на боковые электроды и далее на электроды свечей в соответствии с порядком работы цилиндров двигателя. Центробежный регулятор опережения зажигания изменяет угол опережения зажигания в зависимости от чисел оборотов коленчатого вала двигателя. На верхнем конце валика распределителя закреплена пластина с осями грузиков. Под действием центробежной силы грузики 2 расходятся и поворачивают кулачок 4. Пружины 11 удерживают грузики в исходном положении. При увеличении числа оборотов коленчатого вала двигателя грузики поворачивают кулачок по направлению вращения, вследствие чего обеспечивается более раннее размыкание контактов прерывателя т. е, увеличение угла опережения зажигания. При уменьшении числа оборотов коленчатого вала двигателя грузики под действием пружин перемещают кулачок в обратном направлении, и угол опережения зажигания...

Клапан дополнительной подачи воздуха

Клапан добавочного воздуха (стабилизации частоты вращения коленчатого вала на холостом ходу)

Такие клапана предназначены для подачи дополнительного воздуха при пуске холодного двигателя и поддержания оптимальной частоты вращения коленчатого вала двигателя при его работе на холостом ходу. Изменение частоты вращения коленчатого вала корректируется в зависимости от колебаний нагрузки на двигатель (включение кондиционера воздуха, переключение передач автоматической трансмиссии), при прогреве холодного двигателя, когда во впускной коллектор из форсунок поступает повышенная порция топлива. Описание клапанов приведено выше для систем впрыска К- и КЕ-Джетроник. Кроме таких конструкций в системах электронного впрыска может применяться и конструкция, показанная на рисунке. Рис. Клапан дополнительной подачи воздуха (стабилизации холостого хода): 1 – якорь; 2 – подача воздуха к впускному трубопроводу; 3 – подача воздуха от воздушного фильтра; 4 – регулирующий клапан; 5 – обмотка Клапан дополнительной подачи воздуха, представляет собой регулирующий клапан, связанный с якорем. При отклонении частоты вращения коленчатого вала от запрограммированной величины электронный блок управления увеличивает или уменьшает ток сигнала управления, выдаваемого на обмотку якоря, шток которого соответствующим образом изменяет проходное сечение. Соответственно этому изменяется и количество воздуха, подаваемого в обход дроссельной заслонки, что позволяет поддерживать стабильную частоту вращения коленчатого вала на холостом ходу при подключении дополнительных нагрузок на двигатель, например кондиционер, или увеличивать количество воздуха при пуске холодного двигателя. Управление клапаном осуществляется по сигналу блока управления в зависимости от частоты вращения коленчатого вала и включения пусковой форсунки.

Конструкция свечи зажигания

Конструкция стандартной и резисторной свечей зажигания

Рис. Конструкция свечи зажигания На рисунке показана стандартная и резисторная свечи зажигания. Центральный электрод связан с главным выводом стержня. Электрод сделай из сплава на основе никеля. В некоторых случаях используются даже серебро и платина. Если в электроде использован медный сердечник, это улучшает отвод тепла. Изоляционный материал — керамика очень высокой чистоты, обычно окись алюминия Аl2O1, (чистота 95%). Изолятор заключен в металлический корпус и по внешней поверхности покрыт материалом со следующими свойствами: модуль Юнга: 340 кН/мм3; коэффициент теплового расширения: 7,8*10 К тепловая проводимость: 5—15 Вт/мК (диапазон температур 200-900 «С). электрическое сопротивление: более 10^13 Ом/м. Вышеупомянутый список дан только для справки, поскольку реальные значения при относительно небольших производственных изменениях могут широко меняться. Электропроводный стержень из стеклокерамики между центральным электродом и выводом используется в качестве резистора. Этот резистор имеет две функции: предотвратить выгорание центрального электрода снизить радиопомехи В обоих случаях достигается желательный эффект, потому что резистор ограничивает ток искры в момент зажигания. Пробой, или разряд, по внешней стороне изолятора свечи предотвращается ребрами, которые эффективно увеличивают поверхностное расстояние от вывода свечи до металлической крепежной гайки, которая, конечно, электрически связана с корпусом двигателя, то есть землей.

Катушка микропроцессорной системы зажигания

НАЗНАЧЕНИЕ Используется как высоковольтный повышающий трансформатор — накопитель электрической энергии в индуктивности для создания напряжения, при котором, при определённых условиях, на электродах свечей зажигания произойдёт искровой разряд с образованием дугового разряда, продолжительностью до 3 мс. Распределение высоковольтных импульсов по свечам осуществляется без высоковольтного распределителя и чаще всего с использованием индивидуальных и двухвыводных катушек зажигания (для двигателей с чётным числом цилиндров). Такой способ называют статическим распределением. ПРИНЦИП РАБОТЫ Рис. Двухвыводная катушка с разомкнутым магнитопроводом: 1 — магнитопровод с крепёжным отверстием А, 2 — первичная обмотка, 3 — корпус, 4 — вторичная обмотка, 5 — высоковольтные выводы, 6 — заливка полипропиленом, 7 — низковольтные выводы. На рисунке приведёно изображение двухвыводной катушки зажигания с разомкнутым магнитопроводом в разрезе и одна из схем соединения обмоток. Рис. Схема соединения двухвыводной катушки зажигания: А — выходной каскад 2-х канального электронного коммутатора. VT1, УТ2 — транзисторы коммутатора. TV1, TV2 — катушки зажигания. FV1-FV4 — свечи зажигания. Использование таких катушек возможно в четырехтактном двигателе с чётным числом цилиндров. Если двигатель 4-х цилиндровый, то первая свеча сгруппирована с четвёртой, а вторая — с третьей. При таком соединении «рабочие» искры создаются в цилиндрах в конце такта сжатия, а «холостые» — в конце такта выпуска. Рис. Осциллограммы вторичного напряжения на двухвыводной катушке. Осциллограмма такого процесса приведена на рисунке «Рабочие» искры поджигают топливо воздушную смесь, а «холостые» — разряжаются в среде отработанных газов. Первые двухвыводные катушки зажигания были выполнены на базе одновыводных маслонаполненных катушек с разомкнутым магнитопроводом в металлическом корпусе. Не получили распостранение из-за увеличенных габаритов и массы. Позже были разработаны «сухие» двухвыводные катушки зажигания с разомкнутым магнитопроводом. Вторичная обмотка имеет две секции и намотана сверху первичной, что обеспечивает улучшенную изоляцию выводов высокого напряжения. Обмотки катушки пропитаны компаундом и опресованы полипропиленом. Охлаждение первичной обмотки катушки осуществляется через центральный стержень магнитопровода, который имеет крепежное отверстие. В настоящее время более распостранены катушки зажигания с замкнутым магнитопроводом — трасформаторы зажигания. Сердечник катушки набран из тонких листов электротехнической стали и состоит из двух половин. Обмотки намотаны на каркасы, имеют повышенную изоляционную стойкость. После сборки катушки заливаются эпоксидным компаундом. Рис. Двухвыходная катушка зажигания с замкнутым магнитопроводом: 1 — замкнутый магнитопровод с воздушным зазором, 2 — первичная обмотка, 3 — вторичная обмотка, 4 — корпус, 5 — высоковольтные выводы, 6 — низковольтные выводы, 7 — воздушный зазор, 8 — заливка катушки изоляционным материалом, 9 — пластмассовый каркас. В некоторых модификациях систем управления применяются 4-х выводные катушки зажигания, состоящие из двух двухвыводных катушек, собранных на общем магнитопроводе. Взаимное влияние катушек исключается, использованием двух воздушных зазоров размером 1 -2 мм. Более распространённой является 4 х выводная катушка с высоковольтными диодами. Такая катушка имеет две встречно намотанные первичные обмотки и одну вторичную. Полярность вторичного напряжения определяется направлением укладки витков в первичных обмотках и поданным напряжением. Рис. Четырёхвыводная катушка зажигания с двумя воздушными зазорами в магнитопроводе. Если в точке S напряжение имеет положительную полярность, то открываются ВВ диоды VD1 ,VD4 и в соответствующих цилиндрах (1 и 4) появляются искровые разряды. Вторая первичная обмотка намотана в обратном направлении и при прерывании в ней тока, полярность вторичного напряжения в точке S изменится на отрицательную....

Схема германиевого транзистора

Контактно-транзисторная система зажигания

Бесконтактно-транзисторные системы зажигания (БТСЗ) начали применять с 80-х годов. Если в контактной системе зажигания (КСЗ) прерыватель непосред­ственно размыкает первичную цепь, в контактно-транзисторной (КТСЗ) — цепь управления, то в БТСЗ и управление становится бесконтактным. В этих системах транзисторный коммутатор, прерывающий цепь первичной обмотки катушки зажигания, срабатывает под воздействием электрического импульса, создаваемого бесконтактным датчиком. Все виды датчиков, используемых в БТСЗ делят на па­раметрические и генераторные. В параметрических датчиках изменяются те или иные параметры управляющей (базовой) цепи (сопротивление, индуктив­ность, емкость), в связи с чем изменяется сила тока базы транзистора. Генераторные датчики (магнитоэлек­трические, фотоэлектрические и др.) являются источниками питания управляющей цепи. Наибольшее распространение получили магнитоэлектрические датчики – ин­дукционные  и датчики Холла. Индукционный датчик представляет собой однофазный генератор переменного тока с ротором на постоянных магнитах. Основным недостатком индукционных датчиков является средний большой потребляемый ток (6…8 А) и зависимость силы тока от частоты вращения коленчатого вала двигателя. Устройство коммутатора бесконтактных систем достаточно сложное (в нем есть микросхема, силовой транзистор, а также несколько резисто­ров, стабилитроны и конденсаторы). Энергия искры в три-четыре раза больше, чем в КСЗ. Система небезопасна и требует осторожности. Во всех системах зажигания и других приборах системы зажигания широко применяются полупроводниковые триоды (транзисторы) представляющие собой пластинку кремния или германия и двух наплавленных капель, образующих два перехода. Каждая из трех областей триода имеет свое название: нижняя область, испускающая электроны – носители зарядов, называется эмиттером, верхняя область, собирающая носители зарядов, – коллектором, а средняя область – основанием, или базой. К этим трем областям триода делают самостоятельные выводы. Средний вывод соединяют с базой, один  – с эмиттером,  а  другой – с коллектором. Если транзистор включить в цепь какого-либо источника, соединив вывод эмиттера с плюсовым зажимом, а вывод коллектора с ми­нусовым, то тока в цепи не будет, так как один из переходов будет закрыт. Но если транзистор включить в цепь так, чтобы одна из областей была общей, а между другими создать разность потенциалов, то по­тенциальный барьер открывается, сопротивление транзистора падает до нуля и на выходном зажиме коллектора получается увеличение силы тока. Рис. Схема германиевого транзистора: а – схема включения в цепь; б – условное обозначение; в – внешний вид Транзисторы применяются во всех системах зажигания и на рисунке показана элементарная схема контактно-транзисторной системы зажигания. При включенном зажигании, когда контакты прерывателя разомк­нуты, движения электронов от «ми­нуса» к «плюсу» аккумуляторной батареи нет, т.е. тока в схеме зажигания не будет, так как тран­зистор закрыт в связи с большим переходным сопротивлением между эмиттером и коллектором тран­зистора. В момент замыкания контактов прерывателя в цепи управления транзистора через базу и коллектор будет проходить ток 0,3…0,8 А в зависимости от час­тоты вращения кулачка прерыва­теля. В связи с прохождением тока управления происходит рез­кое снижение сопротивления пе­рехода «эмиттер-коллектор» тран­зистора до нескольких долей Ома и транзистор открывается, вклю­чая цепь первичной обмотки ка­тушки зажигания. Сила тока в этой цепи зависит от напряжения источника (ак­кумуляторной батареи), величин сопротивления и индуктивности первичной   обмотки   и   времени замкнутого состояния контактов прерывателя. С увеличением частоты вращения коленчатого вала двигателя сила тока в цепи низкого напряжения снижается с 7 до 3 А. При размыкании контактов прерывателя ток управления прерывается, что вызывает резкое повышение сопротивления перехода силового...

Блок свеча-катушка зажигания

Системы зажигания с индивидуальными катушками

В современных электронных и микропроцессор­ных системах зажигания широко используются вы­ходные каскады с индивидуальными катушками за­жигания для каждой свечи в отдельности. В объединенной блок на катушки могут устанавливаться силовые транзисторы. Это делается с целью разгрузки контроллера от множества выходных каскадов. Рис. Блок свеча-катушка зажигания: 1 – втулка болта крепления; 2 – радиатор выходного каскада; 3 – электронный блок; 4 – сердечник катушки зажигания; 5 – первичная обмотка; 6 – замыкающий магнитопровод; 7 – демпфирующая шайба; 8 – помехогасящий резистор; 9 – силиконовый изолятор; 10 – вторичная обмотка Примером системы зажигания с блоками свеча-катушка может служить система зажигания фирмы BOSCH, интегрированная в электронную систему автоматиче­ского управления (ЭСАУ) двигателем, которая извест­на под названием Мотроник. В качестве примера можно привести функциональную схему ЭСАУ Мотроник M-3.2, которая устанавливается на четырехцилиндровых двигателях автомобилей AUDI-A4 выпуска после 1995 года. Рис. Статическая система зажигания Мотроник M-3.2 AUDI-A4 с индивидуальной катушкой на каждый цилиндр: ДН – датчик нагрузки (потенциометр дроссельной заслонки); ДХ – датчик угла опережения зажигания (датчик Холла); ДО – датчик частоты вращения (магнитоэлектрический датчик на коленчатом валу); ДТ – датчик температуры двигателя (термистор); ДД – пьезоэлектрический датчик детонации; S – сигнал зажигания, поочередно подаваемый на входы коммутатора; А, В – контакты соединительного разъема; VТ – силовые транзисторы коммутатора; N – индуктивные накопители; ТЗ – катушки зажигания; СВ – свечи зажигания. В контроллере J220 имеется микропроцессор с блоком памяти, в котором хранится трехмерная ха­рактеристика зажигания. По этой ха­рактеристике, а также по сигналам датчика ДО G-28 (датчик частоты вращения двигателя) и датчика ДН G 69 (датчик нагрузки двигателя) устанавливается начальный угол опережения зажигания. Далее по сигналам датчиков ДХ G-40, ДТ G-62 и ДД G-66 в цифровом микропроцессоре производится вычис­ление текущего (необходимого для данного режима работ ДВС) значения угла опережения зажигания, который с помощью электронной схемы переключе­ния каналов подается в виде основного импульса S зажигания в соответствующий канал электронного, коммутатора К-122. К этому времени в этом канале индуктивный накопитель N находится в заряженном, (от бортовой сети +12 В) состоянии и по сигналу S разря­жается на соответствующую свечу зажигания. Через 180° поворота коленчатого вала описанные процессы будут иметь место в следующем (по порядку работы двига­теля) канале коммутатора. Основные преимущества системы зажигания Moтроник состоят в следующем: индивидуальное статическое распределение высокого напряжения по свечам зажигания катушки зажигания с заземленной вторичной обмоткой все входные датчики (датчик Холла, датчик частоты вращения коленчатого вала, датчик температуры ДВС, дат­чики дроссельной заслонки, датчик детонации) – это формирователи электрических сигналов из неэлект­рических воздействий бесконтактного принципа действия. Аналоговые сигналы от этих датчиков преобразуются в контроллере в цифровые сигналы селективная коррекция угла опережения зажигания по детонации (в каждом цилиндре в отдельности) отключение цилиндров ДВС при перебоях в искрообразовании (защита дорогостоящих компонентов двигателя – кислородного датчика и каталитического нейтрализатора от повреждений наличие в контроллере функций самодиагностики и резервирования

Датчик кислорода

Лямбда-регулирование

Для более точного регулирования горючей смеси в зависимости от качества сгорания (наличия свободного кислорода) и более высокой степени очистки отработавших газов необходима регулировка коэффициента избытка воздуха, чтобы состав смеси был близок к стехиометрическому. С этой целью в двигателях применяют системы, основой которых является специальный датчик, определяющий наличие кислорода в отработавших газах (лямбда-зонд), устанавливаемый в выпускной системе. Такие системы называют системами с обратной связью. Датчик кислорода представляет собой элемент из порошка двуокиси циркония, спеченного в форме пробирки, наружная и внутренняя поверхность которой покрыты пористой платиной или ее сплавом, что выполняет роль катализатора и токопроводящих электродов. Внешняя поверхность датчика покрыта тонким защитным слоем керамики. Двуокись циркония при высоких температурах приобретает свойство электролита, а датчик становится гальваническим элементом. Внешняя поверхность датчика соприкасается с отработавшими газами, а внутренняя с атмосферным воздухом. Рис. Датчик кислорода: 1 – твердый электролит двуокиси циркония; 2 – платиновый наружный электрод; 3 – платиновый внутренний электрод; 4 – контакты; 5 – корпусной контакт; 6 – выпуск отработавших газов Принцип работы датчика кислорода показан на рисунке. На поверхности электродов 1 и 2 (пористая платина) всегда присутствует остаточный кислород, связанный с водородом, углеродом или азотом. При высоких температурах (более 350° С) в случае обогащения смеси в граничной зоне Е возникает недостаток кислорода. Отрицательно заряженные ионы кислорода начинают перемещаться к электроду 1, заряд на котором по отношению к электроду 2 становится отрицательным, что приводит к возникновению э.д.с. Рис. Принцип работы датчика кислорода Внутреннее сопротивление циркониевого датчика тем выше, чем ниже его температура. Поэтому генерирование э.д.с. датчиком начинается только при прогреве его до температуры 350° С. До этого времени потенциал на выходе датчика составляет 0,0…0,50 В – это опорное напряжение, подаваемое от входного каскада блока управления. Наличие опорного напряжения на входе блока позволяет определить готовность датчика к работе. На режимах пуска, прогрева холодного двигателя, ускорения и режиме максимальной мощности датчик не работает и состав смеси определяется блоком управления. Для расширения диапазона действия датчика и ускорения скорости его прогрева, особенно на режимах холостого хода и в условиях низких температур, применяют подогрев датчиков или их установку в непосредственной близости от двигателя. При появлении в отработавших газах кислорода (коэффициент избытка воздуха λ больше единицы – бедная смесь) на контактах датчика падает напряжение. Рис. Выходной сигнал датчика кислорода Выходное напряжение датчика Uλ меняется от 0 до 1 В в течение очень короткого промежутка времени (несколько раз за 1 сек.) и свидетельствует о быстром реагировании как самого датчика, так и всей системы топливодозирования на установившихся режимах. Если оно увеличивается, тогда горючая смесь переходит в зону стехиометрического состава (от обедненной к обогащенной) и длительность впрыска (τупр) топлива форсункой впрыска изменяется. Таким образом, датчик работает в релейном режиме и позволяет применить его в системе автоматической стабилизации состава смеси в зоне стехиометрического состава. Упрощенный алгоритм работы системы с обратной связью (режим замкнутого контура или замкнутой петли) представлен на рисунке. Рис. Упрощенный алгоритм работы системы λ-коррекции Весь цикл непрерывно повторяется и состав смеси изменяется от значений λ=0,97…98 до значений λ=1,02…1,03. Исключение составляют следующие режимы: режим максимальной мощности (λ= 0,86…0,88), режим торможения двигателем (отключение подачи топлива, при этом смесь очень обедненная и λ значительно...

Схема включения приборов бесконтактной системы зажигания «Искра»

Бесконтактная экранированная система зажигания

Бесконтактная экранированная система зажигания устанавливается на автомобиле ЗИЛ-131 и его модификациях. Схема системы зажигания показана на рисунке. Рис. Схема включения приборов бесконтактной системы зажигания «Искра»: 1 — фильтр; 2 — добавочный резистор, 3 — катушка зажигания; 4 — аварийный вибратор; 5 — датчик-распределитель, 6 — конденсаторный фильтр, 7 — выключатель зажигания,1 8 — транзисторный коммутатор; 9 — стартер, 10 — свеча зажигания Система состоит из катушки зажигания Б118, датчика-распределителя 4902.3706, транзисторного коммутатора ТК200-01, свечей СН-307В и проводов высокого напряжения в экранирующих шлангах и коллекторах, выключателя зажигания ВК350 и добавочного резистора СЭ326, который автоматически замыкается накоротко при пуске двигателя. Для защиты радиоприема от помех, создаваемых системой зажигания, в цепь питания системы зажигания включен фильтр подавления радиопомех ФР82Ф.

Схема проверки прерывателя-распределителя на стенде

Ремонт элементов системы зажигания автомобиля

Магнето высокого напряжения Пусковые двигатели, установленные на дизелях, имеют автономный источник высокого напряжения — магнето, который вырабатывает ток низкого напряжения, преобразует его в ток высокого напряжения и подает в определенный момент к свечам зажигания. Основными неисправностями магнето являются: размагничивание ротора повреждение обмоток трансформатора износ контактов прерывателя трещина в деталях токоведущих устройств пробой конденсатора нарушение угла абриса магнето Намагниченность ротора проверяют магнитометром МД-4. Если она ниже 220 мкВб, тогда ротор намагничивают на аппарате НА-5-ВИМ от 12-вольтной АКБ 2-3-разовым включением аппарата на 1-2 с. Работоспособность трансформатора проверяют на стенде КИ-968 током 1,5-2,5 А, который пропускают через его первичную обмотку и прерыватель стенда. При частоте вращения кулачкового вала прерывателя 500 мин-1 на трехэлектродном разряднике стенда должна появиться устойчивая искра голубого цвета. Неисправный трансформатор заменяют. В собранном магнето ротор должен плавно вращаться от руки и самоустанавливаться в нейтральное положение, будучи отведенным от него на угол 15-20°. Продольное перемещение ротора допускается до 0,06 мм. Зазор между разомкнутыми контактами прерывателя должен быть в пределах 0,25-0,35 мм. Давление пружины в момент размыкания контактов 5—7 Н. На собранном магнето проверяется абрис — угол между нейтральным положением ротора (магниты ротора находятся в вертикальной плоскости) и положением ротора, когда в первичной обмотке трансформатора будет максимальный по величине ток; в этот момент должны размыкаться контакты прерывателя. Величина абриса долна быть равна 8-12°. Нарушение установки абриса приводит к снижению или к полному прекращению искрообразования из-за уменьшения тока в первичной обмотке трансформатора и напряжения во вторичной. Для проверки величины абриса магнето устанавливают на стенд КИ-968, соединяют с приводом, устанавливают ротор в нейтральное положение, а стрелку разрядника вращением переводят на нуль. Плавно поворачивая рукой привод магнето в направлении рабочего вращения, фиксируют момент размыкания контактов прерывателя (используют прибор ИУК стенда или контрольную лампу). Абрис определяют по шкале разрядника. Устанавливают абрис поворотом кулачка на шейке ротора. Собранное магнето испытывают на бесперебойность искрообразования при частоте вращения 2000-4500 мин-1 в течение 5 мин при зазоре 7 мм на разряднике. Высоковольтную изоляцию магнето проверяют при частоте вращения 2400-3000 мин-1 и зазоре на разряднике 9—11 мм в течение 15 с. В процессе испытания искрообразование должно быть бесперебойным. Прерыватель-распределитель Основными неисправностями являются: износ и обгорание контактов уменьшение упругости пружин износ текстолитовой втулки и пятки рычажка прерывателя трещины или сквозной искровой пробой деталей (крышка, ротор) Обгоревшие контакты зачищают стеклянной шкуркой или специальным надфилем с последующей протиркой ветошью, смоченной в бензине. При высоте контактов менее 0,6 мм заменяют рычаг прерывателя или контактную стойку в сборе. Вместо изношенных контактов припоем ПСр-70 припаивают новые. Натяжение пружины проверяют с помощью динамометра. Усилие пружины по оси контактов в момент их разрыва должно составлять не менее 4,9 Н. Момент разрыва контактов определяют по контрольной лампе. В случае ослабления пружины рычаг прерывателя в сборе заменяют. В регуляторах опережения зажигания поврежденные пружины, диафрагму, прокладку под штуцер, текстолитовые детали заменяют новыми. В собранном прерывателе-распределителе валик должен вращаться легко, его продольное перемещение не должно превышать 0,25 мм. Собранный прерыватель-распределитель регулируют и испытывают на стенде КИ-968. Его соединяют с индукционной катушкой и АКБ стенда. Среднее значение силы тока, проходящего через контакты прерывателя, при прочих равных условиях зависит от угла замкнутого состояния контактов, т....

Момент зажигания

Момент зажигания — это момент образования искры между электродами свечи зажигания. Величина момента зажигания определяется в градусах угла поворота кривошипа (шатунной шейки) коленчатого вала по отношению к верхней мертвой точке поршня. Эта величина именуется угол опережения зажигания — угол поворота кривошипа от момента, при котором на свече зажигания происходит искрообразование, до занятия поршнем верхней мертвой точки. Величина угла опережения зажигания зависит от режима работы двигателя, который, с учетом задержки воспламенения рабочей смеси, должен обеспечивать оптимальное изменение давления в цилиндре во время сгорания смеси. Следовательно, момент зажигания должен быть выбран так, чтобы основной процесс сгорания и, соответственно, пик давления в цилиндре, происходили вскоре после прохождения поршнем верхней мертвой точки. Соответственно, воспламенение сжатой рабочей смеси в цилиндре осуществляется непосредственно перед верхней мертвой точкой поршня. При максимально возможном крутящем моменте и незначительном содержании вредных примесей в отработавших газах необходимо обеспечить минимальный расход топлива. При этом не должно происходить детонационное сгорание. Рис. Распределитель зажигания производства фирмы «Bosch» В индуктивной (контактной) системе зажигания регулировка угла опережения зажигания осуществляется механически в распределителе зажигания. Так как при увеличении частоты вращения коленчатого вала увеличивается задержка воспламенения рабочей смеси, угол опережения зажигания настраивается как «ранний» с помощью центробежного регулятора. Это необходимо, так как при одинаковом составе горючей смеси задержка воспламенения остается постоянной, и вследствие этого, при росте частоты вращения всегда необходим более «ранний» момент зажигания. В двигателях с непосредственным впрыском бензина и послойным образованием рабочей смеси диапазон изменений момента зажигания посредством окончания впрыскивания и времени, необходимого для подготовки смеси, сильно ограничен. Одновременно время задержки воспламенения увеличивается, если смесь в районе свечи зажигания является бедной. Для решения подобной проблемы иногда используют установку второй свечи зажигания в камере сгорания. Кроме того, необходимо соблюдать оптимальный температурный режим работы свечи зажигания, что достигается точной регулировкой зазора между центральным и боковым электродами свечи. В прерывателе-распределителе контактной системы зажигания, кроме регулировки угла опережения зажигания с помощью центробежного регулятора, то есть в зависимости от частоты вращения коленчатого вала, необходимо обеспечить аналогичную регулировку в зависимости от нагрузки на двигатель. Для этого в распределитель встроен вакуумный регулятор угла опережения зажигания (вакуумный корректор), соединенный с впускным коллектором и реагирующий на изменение разрежения воздуха, то есть на изменение нагрузки. В диапазоне частичных нагрузок воспламенение рабочей смеси должно происходить раньше, чем при полной нагрузке с богатой горючей смесью. В режиме холостого хода и при движении накатом, как правило, происходит увеличение задержки воспламенения рабочей смеси. Графическое изображение изменения угла опережения зажигания представлено на рисунке. Рис. Изменение момента зажигания в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель, кривые изменения угла опережения зажигания При использовании системы электронного зажигания возможен более гибкий выбор момента зажигания. При этом обеспечивается лучшая регулировка режимов работы двигателя. Подбор данных для такой регулировки, которая может состоять более чем из 4000 отдельных значений, происходит с помощью испытаний двигателя в различных режимах работы с изменениями параметров (частота вращения коленчатого вала, угол опережения зажигания и др.). Рис. Диаграмма зависимости угла опережения зажигания от частоты вращения коленчатого вала и расхода воздуха (разработка фирмы «Bosch») При испытаниях меняется также нагрузка на двигатель, под которой в данном случае понимается отношение фактического расхода воздуха...

✪Устройство автомобиля Авто⚡сайт №❶