Рубрика: Системы энергообеспечения и пуска

Карбюратор ЗИЛ-130 К-88А

Карбюратор ЗИЛ-130 — вертикальный, с нисходящим (падающим) потоком смеси, с балансированной поплавковой камерой. Карбюратор двухкамерный, каждая камера имеет два диффузора. Необходимый состав смеси получается вследствие пневматического торможения топлива и применения клапана экономайзера. Карбюратор имеет раздельную для каждой камеры систему холостого хода с питанием из главного топливного канала. Для обогащения смеси при резком открытии дроссельных заслонок в карбюраторе имеется ускорительный насос. Для облегчения пуска холодного двигателя карбюратор имеет воздушную заслонку с автоматическим клапаном и кинематическую связь воздушной и дроссельных заслонок. Поплавковая камера, ускорительный насос, экономайзер и воздушная заслонка общие для обеих камер. Схема карбюратора показана на рисунке. Рис. Схема карбюратора ЗИЛ-130: 1 — корпус воздушной горловины; 2 — игольчатый клапан подачи топлива с эластичным запорным элементом из специальной резиновой пленки; 3 — сетчатый фильтр; 4 — пробка фильтра; 5 — канал балансировки поплавковой камеры; 6 — жиклер холостого хода; 7 — полость; 8 — жиклер полной мощности; 9 — воздушный жиклер; 10 — малый диффузор; 11 — кольцевая щель; 12 — форсунка; 13 — воздушная полость; 14 — полый винт; 15 — воздушная заслонка; 16 — автоматический клапан; 17 — толкатель; 18 и 34 — пружины; 19 и 21 — штоки; 20 — планка; 22 — кольцевая канавка; 23 — корпус поплавковой камеры; 24 манжета; 25 — пружина манжеты; 26 — втулка штока; 27 — отверстие; 28 — промежуточный толкатель; 29 шариковый впускной клапан; 30 — седло; 31 — шариковый клапан; 32 — тяга; 33 — клапан экономайзера с механическим приводом; 35 — топливный канал; 36 — пробка; 37 — рычаг; 38 — прокладка; 39 — канал; 40 — игольчатый нагнетательный клапан; 41 — винты регулировки холостого хода; 42 — прямоугольное отверстие; 43 — круглое отверстие системы холостого хода; 44 — канал; 45 дроссельная заслонка; 46 — корпус смесительных камер; 47 главный жиклер; 48 — поплавок; 49 — пружина поплавка Основные данные карбюратора Диаметр диффузора в мм: малого: 8,5 большого: 29,0 Диаметр смесительных камер в мм: 36,0 воздушной горловины в мм: 60,0 Пропускная способность дозирующих элементов при проверке водой под напором 1000 мм при температуре 20 ± 1° в см3/мин: главного жиклера: 315 жиклера полной мощности: 1150 клапана экономайзера: 215 воздушного жиклера: 860 Расстояние от уровня топлива в поплавковой камере до верхней плоскости разъема корпуса поплавковой камеры в мм: 18—19 Вес поплавка в г: 19,7± 0,5 Расстояние между кромкой дроссельной заслонки и стенкой смесительной камеры, соответствующее моменту открытия клапана экономайзера с механическим приводом, в мм: 9,0 Холостой ход регулируют упорным винтом 2, ограничивающим закрытие дроссельных заслонок, и двумя винтами 1, изменяющими состав горючей смеси при полностью прогретом двигателе и при совершенно исправно» системе зажигания. Особое внимание должно быть обращено на исправность свечей и правильность зазора между их электродами. Следует учитывать, что карбюратор двухкамерный и состав смеси в каждой камере регулируют независимо от состава смеси другой камеры соответствующим винтом. Кроме того, надо помнить, что при завертывании винтов смесь обедняется, а при их отвертывании — обогащается. Рис. Регулировка системы холостого хода карбюратора: 1 — винты регулировки системы холостого хода; 2 — упорный винт Начиная регулировку, надо завернуть винты до отказа, однако не слишком...

Система электрического пуска двигателя

В систему электрического пуска двигателя входят механические и электрические узлы, которые обеспечивают проворачивание двигателя при его пуске. В начале прошлого века двигатель проворачивали вручную, с помощью заводной рукоятки. В состав современных схем электрического пуска двигателя входят следующие компоненты: Стартер Стартер — это, обычно, электродвигатель мощностью от 0,5 до 2,6 л.с. (от 0,4 кВт до 2,0 кВт). Рис. Пример типичного стартера с тяговым реле Аккумуляторная батарея Аккумуляторная батарея должна иметь необходимую емкость и быть заряженной, по крайней мере, на 75%, чтобы обеспечить ток и напряжение, необходимые для нормальной работы стартера. Тяговое реле Стартер потребляет большой пусковой ток, и в системе должны быть предусмотрены средства включения и выключения стартера. Для непосредственного включения и выключения стартера потребовался бы очень мощный выключатель. Вместо этого используется слаботочный переключатель (замок/выключатель зажигания), который управляет специальным реле, коммутирующим большой пусковой ток. Механизм привода двигателя Механический привод двигателя от стартера осуществляется с помощью небольшой шестерни, установленной на валу стартера, которая вводится в зацепление с зубчатым венцом, стоящим на маховике двигателя, и обеспечивает передачу крутящего момента со стартера на коленчатый вал двигателя, заставляя его вращаться. Замок/выключатель зажигания Замок/выключатель зажигания и блокировочные выключатели управляют работой стартера. Блокировочный выключатель стартера (ПРИ ВКЛЮЧЕННОМ СЦЕПЛЕНИИ) Этот выключатель блокирует включение стартера в случае, если переключатель скоростей не находится в положении парковки или на нейтрали, или педаль сцепления — отпущена. Рис. Типичная схема электрического пуска двигателя. Обратите внимание на то, что в первый момент при повороте ключа зажигания в положение «пуск» напряжение подается одновременно и на втягивающую обмотку и на удерживающую обмотку тягового реле. Как только контактный диск электромагнита замыкает клеммы В и М, через обмотку стартера начинает течь ток от аккумуляторной батареи Проследите, как ведет себя при пуске двигателя освещение салона При диагностике причины нарушения нормального пуска двигателя откройте дверь автомобиля и проследите за тем, как изменяется яркость лампочек освещения салона. Яркость свечения лампы освещения зависит от напряжения ее питания. При нормальной работе стартера яркость освещение салона слегка уменьшается. Если яркость освещения не изменяется, то причиной нарушения, обычно, является обрыв в цепи управления системой пуска. Если освещение почти или полностью гаснет, то причиной нарушения, скорее всего, является короткое замыкание или пробой на массу обмоток возбуждения стартера или неисправность аккумуляторной батареи. Не стучите по стартеру! В прошлом нередко можно было наблюдать, как техник стучал по стартеру, пытаясь выяснить, почему он не работает. Часто под действием ударной нагрузки происходило выравнивание или смещение токосъемных щеток, ротора и вкладышей подшипников. Во многих случаях после удара по стартеру его работоспособность — пусть даже и ненадолго — восстанавливалась. Но в конструкции большинства современных стартеров используются постоянные магниты, которые отличаются хрупкостью и при ударе по стартеру могут расколоться. Разбитый магнит распадается на несколько слабых магнитов. В ряде первых конструкций стартеров с постоянными магнитами, магниты приклеивались к корпусу статора. При сильном ударе по стартеру эти магниты разлетались на куски, которые, попав на ротор или в гнезда подшипников, приводили стартер в полную негодность.

Распределённый многоточечный электронный впрыск

На рисунках и схемах приведённых далее показаны основные схемы построения систем питания и систем управления распределённым впрыском топлива. Первая схема построена на использовании датчика расхода воздуха лопастного (флюгерного) типа, вторая — на использовании датчика расхода воздуха типа «горячая нить» и «горячая плёнка», третья — без использования датчика расхода воздуха (метод косвенного расчёта поступившего во впускной коллектор воздуха по показаниям MAP датчика (Е1301)). На рисунке ниже приведена электросхема системы управления двигателем а\м ПЕЖО 405 М1.3. Рис. Электросхема системы управления двигателем автомобилем ПЕЖО 405 (84-93): 1 — датчик измерения количества поступившего в двигатель воздуха, 3 — датчик положения дроссельной заслонки, 4 — блок управления, 6 — датчик температуры охлаждающей жидкости, 8 — кислородный датчик, 9 — форсунки, 10 — модуль зажигания, 11 — системное реле, 12 — реле бензонасоса, 13 — датчик температуры воздуха, 15 — регулятор холостого хода, 17 — катушка зажигания, 20 — датчик детонации, 21 — топливный насос, 24 — датчик частоты вращения коленчатого вала, 26 — лампа самодиагностики, 36 — предохранитель. Принцип работы систем распределённого впрыска отличается от систем МОНО тем, что количество впрыскиваемого топлива рассчитывается по показаниям расходомера воздуха и само впрыскивание производится под впускной клапан каждого цилиндра. Такая схема позволяет более точно дозировать количество и момент впрыскивания топлива. Рис. Рабочая схема автомобиля ПЕЖО 405 (84-93): 1 — топливный аккумулятор, 2 — топливная рейка, 3 — регулятор давления топлива, 4 — ЭБУ двигателем, 5 — замок зажигания, 6 — катушка зажигания, 7 — распределитель зажигания, 8 — форсунка, 9 — датчик положения дроссельной заслонки, 10 — термометр, поступающего воздуха (расположен в расходомере воздуха), 11 — датчик содержания кислорода в отработанных газах, 12 — датчик детонации, 13 — термометр охлаждающей жидкости, 14 — датчик оборотов, 15 — регулятор холостого хода, 16 — вход в нейтрализатор, 17 — клапан адсорбера, 18 — адсорбер, 19 — коммутатор, 20 — системное реле, 21 — реле бензонасоса, 22 — диагностический разъем, 23 — лампа самодиагностики, 24 — подкачивающий бензонасос, 25 — основной бензонасос, 26 — топливный фильтр, 27 — свеча зажигания. На рисунке выше приведена рабочая схема, а на рисунке ниже — локаторная схема расположения датчиков и исполнительных устройств в подкапотном пространстве. Рис. Схема расположения элементов системы управления двигателем автомобилем ПЕЖО 405 (84-93): 1 — разъём и предохранитель топливного насоса, 2 — реле топливного насоса, 3 — разъем ЭБУ или кислородного датчика, 4 — диагностический разъём, 5 — системное реле, 6 — термометр охлаждающей жидкости, 7 — датчик оборотов, 8 — ЭБУ двигателем, 9 — форсунки, 10 — датчик детонации, 11 — регулятор холостого хода, 12 — датчик положения дроссельной заслонки, 13 — электроклапан адсорбера, 14 — расходомер воздуха и термометр, поступающего воздуха. Рассмотрим работу такой системы управления двигателем. Точно так же, как и в системах MOНO впрыска, ЭБУ двигателем распознаёт вращение коленвала по датчику оборотов. Включается подкачивающий и основной бензонасосы(может использоваться только один) и топливо через фильтр и демпфер попадает в топливную магистраль(рейку), в которую вставлены форсунки (инжектора). На другом конце топливной рейки установлен регулятор давления топлива, пружинно-мембранный механизм, которой настроен на определённое давление топлива (Т0306). Пары топлива, скапливающиеся в бензобаке в современных...

Датчик отключения бензонасоса (ударный)

Датчик отключения бензонасоса предназначен для отключения бензонасоса (размыкание цепи питания) при сотрясении (аварии). Один из вариантов внешнего вида инерционного датчика отключения бензонасоса приведён на рисунке. Рис. Инерционный выключатель Принцип работы датчика В нормальном состоянии контакты переключателя замкнуты. После удара или сотрясения автомобиля контакты размыкаются и насос обесточивается. Для повторного включения бензонасоса необходимо нажать кнопку включателя — цепь замкнётся. На рисунке приведён фрагмент электросхемы системы управления двигателем Форд «Мондео» 2.0, 16 v — NGC. Рис. Фрагмент схемы системы управления двигателем автомобиля Форд «Мондео»: 3 — бензонасос, 91 — реле бензонасоса, 159 — контакты инерционного выключателя питания. Расположение Необходимо смотреть техническую документацию. Часто располагается под панелью со стороны водителя (Хонда «Аккорд»), иногда в багажнике (Форд «Таурус»), под водительским сидением (Форд «Эскорт»). Неисправности датчика отключения бензонасоса Засоряются контакты переключателя, лопается пружина, механические поломки включателя. Методика проверки В нормальном состоянии контакты должны быть замкнуты. При сотрясении датчика — контакты размыкаются. При нажатии кнопки контакты должны быть снова в замкнутом состоянии. Ремонт Вскрыть и найти причину неправильной работы: загрязнены контакты, сломана пружина и т.п.

Пусковой клапан

Пневматический пуск дизеля

Пневматический пуск применяется в качестве вспомогательного на дизель-электрическом тракторе ДЭТ-250М для дизеля В-31 с рабочим объемом 38,88 л. Сущность данной системы пуска заключается в том, что сжатый воздух с помощью специальной воздухораспределительной системы подается непосредственно в цилиндры двигателя и под действием давления на поршни приводит во вращение коленчатый вал. Воздухораспределитель пневматической системы пуска имеет корпус 1, в котором выполнено двенадцать (по числу цилиндров) каналов. В каждом канале сделано резьбовое отверстие, в которое ввертывается зажим 2, крепящий поворотный угольник 16, от которого идет трубка 17, подводящая воздух в цилиндр двигателя. Распределительный диск 14, имеющий золотниковое отверстие, расположен на шлицах втулки 13, которая, в свою очередь, находится на шлицах валика 10. Золотниковое отверстие на распределительном диске овальной формы и выполнено по дуге 60. Радиус расположения золотникового отверстия равен радиусу расположения отверстий каналов 18 в корпусе 1. Распределительный диск прижат к корпусу пружиной 11, с обеих сторон которой установлены упорные шайбы 5. Одна из шайб упирается в распределительный диск 14, а другая удерживается на валике штифтом 9. Полость А закрывается колпачком 3. В колпак ввернут зажим 8, крепящий поворотный угольник 7, к которому подводится воздух от баллона со сжатым воздухом, заряженным под давлением 15 МПа. Валик 10 соединен с одной из шестерен 19, вращающейся в 2 раза медленнее коленчатого вала. В головки цилиндров ввернуты пусковые клапаны. Рис. Воздухораспределитель пневматической системы пуска: 1 — корпус; 2 — зажим; 3 — колпачок; 4, 15 — прокладки; 5 — упорные шайбы; 6 — крышка; 7, 16 — поворотные угольники; 8 — зажимы: 9 — штифт; 10 — валик; 11 — пружина; 12 — стопор; 13 — регулировочная втулка; 14 — распределительный диск; 17 — воздухораспределительные трубки; 18 — канал; 19 — шестерня; А — полость. Рис. Пусковой клапан: 1 — клапан; 2 — корпус клапана; 3 — пружина; 4 — гайка; 5 — шплинт; 6 — колпак; 7 — угольник; 8 — уплотнительное кольцо; а — впускные отверстия Соединение угольников 16 воздухораспределителя трубками 77 с угольниками пусковых клапанов производится по схеме, обеспечивающей поочередную подачу сжатого воздуха в соответствии с порядком работы цилиндров. Регулировка воздухораспределителя должна быть такой, чтобы подача воздуха в цилиндр начиналась в конце такта сжатия за 5-10 до ВМТ (по углу поворота коленчатого вала). Полное открытие наклонных каналов 18 в корпусе 1 соответствует 25-30″ после ВМТ в такте расширения. Регулировка воздухораспределения производится изменением положения распределительного диска 14 относительно валика 10. При этом устанавливают необходимый момент подачи воздуха в цилиндр с точностью до 1″. Пневматический пуск осуществляется следующим образом. При открытии запорного вентиля баллона сжатого воздуха и перепускного крана воздух поступает к поворотному угольнику 7 и затем в полость А воздухораспределителя. В зависимости от положения золотникового отверстия в распределительном диске воздух поступает в один из пусковых клапанов. Клапан 1 под давлением воздуха отходит от седла, и воздух поступает в соответствующий цилиндр. Причем по манометру наблюдают, чтобы давление в системе пуска было не более 9 МПа. Благодаря высокому давлению воздуха на поршень коленчатый вал начинает вращаться. Воздух поступает в цилиндры двигателя соответственно порядку работы цилиндров. Прокручивание двигателя производят в течение 1-2 с, после чего нажатием педали...

Классификация и состав системы электрооборудования ТС

Классификация и состав системы электрооборудования ТС

Электрооборудование автомобилей и тракторов представляет собой сложный комплекс взаимосвязанных электрических и электронных устройств. К автотракторному электрооборудованию относят следующие системы и устройства: электроснабжения электростартерного пуска двигателя зажигания освещения, световой и звуковой сигнализации информации и контроля технического состояния автомобиля, трактора и их агрегатов электропривода подавления радиопомех электронного управления системами и агрегатами автомобиля и трактора В систему электроснабжения входят генераторная установка и ак­кумуляторная батарея. Система электростартерного пуска двигателя включает в себя ак­кумуляторную батарею, электростартер, реле управления (дополни­тельные реле и реле блокировки) и электротехнические устройства облегчения пуска двигателя. Система зажигания обеспечивает воспламенение рабочей смеси в Цилиндрах бензиновых двигателей искрой высокого напряжения, возникающей между электродами свечи зажигания. Помимо свечей к системе зажигания относятся катушки зажигания, прерыватели-рас­пределители, транзисторные коммутаторы, электронные блоки управления (контроллеры), добавочные резисторы, высоковольтные провода, наконечники свечей и т.д. Система освещения и световой сигнализации объединяет осветитель­ные приборы (фары головного и рабочего освещения), светосигнальные фонари (габаритные огни, указатели поворота, сигналы торможе­ния, фонари заднего хода и др.) и различные реле управления ими. Система информации и контроля технического состояния автомоби­ля, трактора и их агрегатов включает в себя датчики и указатели дав­ления, температуры, уровня топлива в баке, спидометр, тахометр, сигнальные (контрольные) лампы и т.д. На автомобиле может быть установлена бортовая система контроля с компьютером. Электропривод (электродвигатели, моторедукторы, мотонасосы, элек­тромагниты) находит все большее применение в системах стеклоочистки, отопления, вентиляции, предпускового подогрева двигателя, в стекло­подъемниках, в системах подъема и опускания антенны, в устройствах блокировки дверей, в исполнительных механизмах электронных систем. Используется разнообразная коммутационная и защитная аппара­тура: выключатели переключатели реле различного назначения контакторы предохранители и блоки предохранителей соединитель­ные панели и разъемные соединения Расширяется применение электронных систем впрыскивания топ­лива, антиблокировочных, противобуксовочных и навигационных систем, систем предотвращения столкновений. Число и мощность потребителей электроэнергии на автомобилях и тракторах постоянно увеличиваются, соответственно возрастает мощность источников электрической энергии. На смену устаревшему электрооборудованию приходят новые, более сложные по конструк­ции и схемным решениям электрические и электронные изделия и системы. От совершенства конструкции и технического состояния электро­оборудования зависят эксплуатационная надежность и производи­тельность автомобиля и трактора.

Схема управления электростартером

Структурная схема системы управления электростартерного пуска

Тип системы пуска определяют используемая энергия и конструкция основного пускового устройства — стартера. Для пуска автомо­бильных и тракторных двигателей используют системы электростартерного пуска. Они надежны в работе, обеспечивают дистанционное управление и возможность автоматизации процесса пуска двигателей с помощью электротехнических устройств. Структурные схемы систем управления электростартерного пуска автомобильных и тракторных двигателей отличаются между собой не­значительно. В системах управления стартером предусмот­рены электромагнитные тяговые реле, дополнительные реле и реле блокировки, обеспечивающие дистанционное включение, автомати­ческое отключение стартера от аккумуляторной батареи после пуска двигателя и предотвращение включения стартера при работающем двигателе. Источником энергии в системах электростартерного пуска являет­ся стартерная свинцовая аккумуляторная батарея (химический источник постоянного тока, поэтому в электростартерах используют элек­тродвигатели постоянного тока). Рис. Схема управления электростартером: 1 — контакты; 2 — подвижный контактный диск; 3, 4 — втягивающая и удерживаю­щая обмотки тягового реле соответственно; 5 — якорь тягового реле; 6 — шток; 7 — рычаг привода; 8 — поводковая муфта; 9 — муфта свободного хода; 10 — шестерня; 11 — зубчатый венец маховика; 12 — электростартер Напряжение на стартерный электродвигатель подается от аккуму­ляторной батареи через замкнутые контакты 1 тягового электромагнитного реле. При замыкании контактов выключателя приборов и стартера, дополнительного реле или реле блокировки втя­гивающая 3 и удерживающая 4 обмотки тягового реле подключаются к аккумуляторной батарее GB. Якорь 5 тягового реле притягивается к магнитопроводу электромагнита. С помощью штока 6 и рычага 7 при­вода шестерня 10 входит в зацепление с зубчатым венцом 11 маховика двигателя. В конце хода якоря 5 тягового реле контактная пластина замыкает силовые контактные болты, и стартерный электродвигатель приводит во вращение коленчатый вал двигателя. После пуска двигателя муфта 9 свободного хода предотвращает пе­редачу вращающего момента от маховика к валу якоря электродвига­теля. Шестерня привода не выходит из зацепления с венцом маховика. До тех пор, пока замкнуты контакты 1. При размыкании контактов выключателя S втягивающая и удерживающая обмотки тягового реле подсоединяются к аккумуляторной батарее последовательно через си­ловые контакты.

Схема пуска электрическим стартером

Системы пуска двигателя

Чтобы пустить двигатель внутреннего сгорания, вращение коленчатого вала необходимо довести до некоторой частоты, обеспечивающей смесеобразование, заполнение цилиндров свежим зарядом, сжатие и воспламенение смеси. При температуре воздуха выше 0 °С эта частота вращения для карбюраторных двигателей должна быть не менее 40…50 мин-1 а для дизелей — не менее 150…250 мин-1. Пуск дизеля вспомогательным бензиновым двигателем используют на некоторых тракторных дизелях. Для облегчения пуска дизеля жидкостные системы охлаждения пускового двигателя и дизеля взаимосвязаны, благодаря чему обеспечивается прогрев дизеля. Пуск электрическим стартером — наиболее распространенный способ, пригодный для автомобильных, тракторных и пусковых двигателей. Схема системы пуска электрическим стартером показана на рисунке. Электрический стартер 3 питается от аккумуляторной батареи 1 током низкого напряжения. В период пуска шестерня 4 стартера входит в зацепление с зубчатым венцом 5 маховика двигателя. Передаточное число между шестерней стартера и венцом маховика подбирают с таким расчетом, чтобы сообщить коленчатому валу двигателя необходимую для пуска частоту вращения. Стартер включают на период пуска и выключают специальным механизмом сразу после того, как двигатель начнет работать. Рисунок. Схема пуска электрическим стартером: 1 — аккумуляторная батарея; 2 — включатель; 3 — электрический стартер; 4 — шестерня стартера; 5 — зубчатый венец маховики двигателя Система пуска дизелей с помощью двигателя надежна в любых температурных условиях, но обслуживание ее и операции при пуске сложнее, чем в случае пуска электрическим стартером. Электрический стартер предназначен для пуска как карбюраторных двигателей, так и дизелей. На тракторах Т-16М, Т-25А, МТЗ-80, К-701 электрическим стартером запускают основные дизели, а на тракторах ДТ-75М, Т-150, Т-150К — пусковые двигатели. Стартер представляет собой электродвигатель постоянного тока с механизмом привода и включателем. Стартеры выпускают с механическим и электромагнитным включением шестерни привода. Наиболее распространено электромагнитное включение.

Смесеобразование и поступление топливовоздушной смеси в цилиндры двигателя

Смесеобразование и поступление топливовоздушной смеси в цилиндры двигателя

На автомобильных бензиновых двигателях с воспламенением от искры распространение получили два способа приготовления и подачи топливовоздушной смеси в цилиндры. Наибольшее распространение имеет способ приготовления смеси с помощью карбюратора. В настоящее время наиболее широко применяется впрыскивание топлива, так как этому способствует внедрение микропроцессорных систем управления двигателей. Способ получения смеси за счет впрыскивания топлива в зону впускных клапанов или непосредственно в цилиндры двигателя по сравнению с карбюратором имеет ряд преимуществ: возможность получения большей равномерности распределения смеси по цилиндрам улучшение наполнения вследствие уменьшения аэродинамического сопротивления и обеспечения необходимой закономерности подачи топлива Процесс смесеобразования при использовании бензина включает две стадии — дозирование и испарение. В отличие от системы впрыскивания при применении карбюратора эти стадии объединены, однако последняя продолжается непосредственно в цилиндре при сжатии. Для получения топливовоздушной смеси топливо преобразуется в парообразное состояние и его пары смешиваются с необходимым количеством воздуха. Испарение топлива в карбюраторе начинается сразу после истечения его из распылителя и продолжается в движущемся потоке воздуха. При пуске двигателя в условиях низких температур в смесительной камере карбюратора и во впускном трубопроводе успевает испариться только незначительная часть легких фракций. Основная часть топлива, состоящая из тяжелых фракций, оседает на холодных стенках впускного трубопровода в виде топливной пленки. Образование топливной пленки происходит и вследствие конденсации паров испарившейся части топлива при соприкосновении ее с холодными стенками трубопровода. Интенсивность образования пленки зависит от низкотемпературных свойств топлива. Бензин представляет собой сложную смесь различных углеводородов, переходящих в парообразное состояние в определенной последовательности. Первоначально в паровоздушную смесь переходят низкокипящие фракции углеводородов, а испарение высококипящих, находящихся в виде топливной пленкн, происходит очень медленно Испарение топлива имеет место в течение всего процесса карбюрации и обц зательно сопровождается поглощением энергии. Такой характер испарения обусловливает необходимость применения при пуске холодного двигателя топлива с повышенным содержанием легких фракций и высоким давлением насыщенных паров. Полнота и эффективность сгорания топливовоздушной смеси зависит от точности дозирования топлива, качества его распиливания, перемешивания с воздухом и интенсивности испарения. Как было указано ранее, топливо воздушная смесь может воспламеняться и гореть только в определенных пределах изменения ее состава. При пуске холодного двигателя обеспечить точное дозирование с помощью карбюратора представляет собой сложную задачу. Чем ниже температура пуска, тем больше топливной пленки попадает в цилиндры двигателя, осложняет процесс дозирования. Для повышения содержания паров в смеси требуется увеличение подачи топлива. Чем тяжелее фракционный состав топлива, ниже температура и меньше частота вращения коленчатого вала, тем большее количество топлива должно вводиться в смесительную камеру карбюратора при пуске. Продолжительность пуска уменьшается по мере обогащения смеси. Для наилучших условий воспламенения смеси в первый период пуска карбюратор должен обеспечивать ее состав с расчетным коэффициентом избытка воздуха а в пределах 0,05-0,07. При коэффициенте а > 0,07 прдолжительность пуска возрастает вследствие недостаточности топлива в парообразном состоянии (испаряется только часть топлива, поступающего во впускной трубопровод). При а < 0,05 возрастает жидкостная часть составляющей смеси, попадапие которой на электроды зажигательных свечей приводит к прекращению искрообразования. Внешним признаком переобогащения смеси является отсутствие вспышек воспламенения. Впрыскивание топлива обеспечивает высокую стабильность получения смеси в качественном и количественном отношении независимо от n коленчатого вала двигателя: процесс дозирования осуществляется в определенной последовательности подачи топлива достигается высокая равномерность распределения смеси по...

Назначение и общее устройство системы питания карбюраторного двигателя

Рис. Схема системы питания: 1 — фильтр-отстойник; 2 — датчик указателя уровня бензина; 3 — горловина бака; 4 — бензиновый бак; 5 — воздушный фильтр; 6 — карбюратор; 7 — бензопровод; 8 — гибкий шланг; 9 — бензиновый насос; 10 — выпускной трубопровод; 11 — впускной трубопровод; 12 — глушитель Для приготовления горючей смеси и подачи ее в цилиндры, а также для удаления из цилиндров продуктов сгорания служит система питания двигателя, в которую входят следующие приборы: карбюратор 6 — для приготовления горючей смеси; бензиновый бак 4 — для хранения бензина; бензиновый насос 9 — для додачи бензина; фильтр-отстойник 1 — для очистки бензина от механических примесей и воды; бензопроводы 7— трубки, по которым подается бензин; воздушный фильтр 5 — для очистки воздуха от пыли; впускной трубопровод 11 — для соединения карбюратора с впускными каналами цилиндров двигателя; выпускной трубопровод 10 — для соединения выпускных каналов цилиндров двигателя с глушителем; глушитель 12 — для уменьшения шума выпуска отработавших газов.

Схема системы питания двигателя грузового автомобиля

Пуск двигателя, работающего на газообразном топливе

Любой двигатель, работающий на бензине, может быть переведен на работу с использованием газообразного топлива (сжиженного или сжатого газа). Вне зависимости от вида используемого газа газобаллонная установка включает: емкость для хранения и транспортировки газообразного топлива устройство для подогрева и испарения газа газовый редуктор дозирующее устройство смеситель трубопроводы контрольные приборы Газобаллонные установки, предназначенные для питания газовых двигателей автомобилей ЗИЛ-431410 и ГАЗ-53-07 сжиженным пропан-бутановым газом, рассчитаны на избыточное давление 1,6 МПа. Рис. Схема системы питания двигателя грузового автомобиля, работающего на сжиженном газе: 1 — топливный бак; 2 — запорный кран; 3 — фильтр-отстойник; 4 — двигатель; 5 — бензонасос; 6 — карбюратор-смеситель; 7 — трубопровод основной подачн газа; 8 — газопровод системы холостого хода; 9 — дозирующее экономайзерное устройство; 10 — манометр; 11 — воздуховод, соединяющий редуктор с задроссельным пространством; 12 — двухступенчатый газовый редуктор; 13, 14 — фильтры; 15 — испаритель; 16 — шланги подвода к отвода охлаждающей жидкости к испарителю; 17 — магистральный вентиль; 18 — расходный вентиль (жидкостной); 19 — расходный вентиль (паровой); 20 — манометр; 21 — газовый баллон. Работа таких двигателей осуществляется при подаче газа в парообразном состоянии к редуктору. Испарение газа при работе двигателя происходит в испарителе за счет теплоты жидкости, поступающей в него из системы охлаждения. При пуске и прогреве двигателя, когда температура охлаждающей жидкости низкая для испарения газа, подача газа осуществляется через верхний вентиль газового баллона, обеспечивающего подачу в редуктор паровой фазы газа. Приготовление газовоздушной смеси происходит в газовом смесителе. Газовые двигатели автомобилей ЗИЛ и ГАЗ комплектуются двухкамерными смесителями типа СГ-250 с падающим потоком газовоздушной смеси и параллельным открытием воздушных и дроссельных заслонок. Опыт эксплуатации первых конструкций газобаллонных установок показал, что использовать воздушные заслонки в качестве пускового устройства при низких температурах малоэффективно. Для улучшения пуска была разработана автономная пусковая система. В такой системе подача паровой фазы газа в полость смесителя осуществляется над обратным клапаном. Паровая фаза отбирается из первой ступени редуктора через жиклер малого диаметра (0,8 мм). Такая схема исключает неравномерность подачи газа в форсунку при малом значении n и обеспечивает при закрытых воздушных заслонках с углом открытия дроссельных заслонок 15-20 расчетные значения а, равные 0,5-0,55. Это позволяет при использовании контактно-транзисторной системы зажигания с углом опережения 8-9 до ВМТ получить при -10 и -15 С минимальную пусковую частоту вращения коленчатого вала 50 и 60 мин-1. Одновременно пусковые испытания подтверждают влияние на повышение предельных температур надежного пуска фракционного состава газа и наличия в нем влаги. В настоящее время все большее распространение получают системы питания двигателя, работающие на сжатом природном газе (метане). Для смешения газа с воздухом в таких установках используются карбюраторы-смесители. Опыт эксплуатации показал, что пуск холодного двигателя затруднен, а в некоторых случаях практически не возможен. Основной причиной неудовлетворительного пуска является шунтирование свечей зажигания влагой, образующейся в процессе горения смеси. Другой причиной является нерациональная система подачи и регулировки газа в карбюратор-смеситель. Поэтому для пуска двигателя ЗИЛ-5086.1000400 на сжатом газе применяли пусковую сисразработанную для газового двигателя ЗИЛ-5085.1000400 (с диаметром жиклера 1,1 мм и углом открытия дроссельных заслонок 15°). Однако этого оказалось недостаточно для надежного пуска. Надежность пуска увеличивается в результате применения системы зажигания, обеспечивающей по сравнению с...

Номинальные параметры электрооборудования

Номинальные параметры электрооборудования

Номинальные параметры изделий автотракторного электрообору­дования (номинальная мощность, номинальная сила тока, номиналь­ное напряжение и др.) относятся к работе при температуре 25 + ± 10 °С, относительной влажности 45—80 % и давлении 86,6— 106,6 кПа (650—800 мм рт.ст.). В условиях, отличающихся от указан­ных, номинальные параметры могут быть изменены на величину, оговоренную в стандартах на отдельные виды изделий. Все номиналь­ные параметры измеряются при номинальном напряжении. Номинальное напряжение системы электрооборудования — 12 или 24 В. Номинальное напряжение потребителей электроэнергии — 12 или 24 В, а генераторных установок — 14 и 28 В. Потребители электроэнергии, работающие при движении, долж­ны быть работоспособными при изменении подводимого напряже­ния в пределах от 90 до 125 % установленного для них номинального напряжения.

✪Устройство автомобиля Авто⚡сайт №❶