Рубрика: Тормозная система

Обслуживание тормозной системы

Обслуживание тормозной системы

Каждые 10000 км пробега автомобиля следует проводить следующие работы по обслуживанию тормозной системы: Проверить и, в случае необходимости, отрегулировать положение тормозной педали. Холостой ход педали должен находится в пределах 1…8 мм, в то же время, расстояние педали от передней перегородки кузова должно быть не менее 75 мм. Проверить и, в случае необходимости, отрегулировать стояночный тормоз. Холостой ход рычага не должен превышать 2 зубцов, а полное торможение должно наступить при движении рычага на 3…8 зубцов. Регулировка проводится с помощью гаек, позволяющих удлинять или укорачивать оболочки тросов. Проверить состояние тормозных магистралей: металлических — на наличие повреждений, деформаций, изгибов или царапин; гибких — на наличие потертостей и трещин. Проверить состояние накладок колодок и дисков передних тормозов, измерить их толщину. Накладки колодок следует заменить, когда их толщина достигнет 1 мм, а диски — при толщине менее 8 мм. Проверить состояние тормозных барабанов и колодок, измерить их толщину. Колодки следует заменить, когда толщина накладок достигнет 1 мм, а барабаны — при увеличении внутреннего диаметра более 182 мм. После пробега 40000 км следует заменить тормозную жидкость в системе. Можно применять (пополнение и замена) тормозную жидкость DOT-3 польского производства. Замена тормозных колодок Тормозные колодки передних тормозов необходимо заменить, если их толщина меньше минимально допустимой. Очередность работ при замене обкладок следующая: Ослабить гайки крепления передних колес, поднять перед автомобиля и передние колеса. Снять передние колеса. Вывернуть болты из направляющих пальцев. Извлечь суппорт и отвести его, не допуская нагрузки на гибкий тормозной шланг. Извлечь изношенные колодки и заменить их новыми. Вдвинуть поршень внутрь цилиндра суппорта, стараясь не повредить пыльник поршня и не допуская вытекания тормозной жидкости из бачка. Установить на место суппорт и ввернуть болты в направляющие пальцы. Установить передние колеса, наживить гайки, опустить перед автомобиля и затянуть колесные гайки с усилием 40…70 Нм. Удаление воздушных пузырьков из тормозной системы Воздух, попавший в гидравлическую систему во время ремонта тормозов (замена магистралей, тормозных цилиндров или замена тормозной жидкости), уменьшает эффективность торможения, вследствие чего его необходимо удалить. Перед началом этой операции необходимо поверить герметичность гидравлической системы, пополнить бачок тормозной жидкостью и очистить все наконечники штуцеров удаления воздуха. В первую очередь следует удалить воздух из контура передних тормозов, затем задних, начиная каждый раз от тормозного механизма, наиболее удаленного от главного тормозного цилиндра. Удалять воздушные пузырьки необходимо следующим образом: Снять со штуцера удаления воздуха колпачок, одеть на штуцер гибкий шланг, другой конец которого погрузить в тормозную жидкость, частично заполняющую какую-либо емкость. Нажать несколько раз на педаль тормоза и удерживать ее в нажатом положении. Отвернуть штуцер отвода воздуха на полоборота, наблюдая за выходящими, из системы пузырьками воздуха. Затянуть штуцер в момент полного нажатия тормозной педали. Эту операцию повторять до тех пор, пока из штуцера не начнет вытекать тормозная жидкость без пузырьков. Нажимая на педаль тормоза, затянуть о упора штуцер, снять гибкий шланг, удалить остатки тормозной жидкости из штуцера, установить защитный колпачок. Операцию удаления воздуха провести на втором колесе контура передних тормозов, затем на обеих колесах контура задних тормозов. Во время работы необходимо регулярно пополнять тормозной жидкостью бачок. Замена тормозной жидкости Тормозную жидкость необходимо заменять каждые 40000 км пробега. Эту операцию можно выполнить одним из...

Проверка показателей технического состояния тормозных систем стендовым методом

Проверка показателей технического состояния тормозных систем стендовым методом

Перед проверкой технического состояния тормозных систем транспортного средства на тормозном стенде необходимо выполнить ряд подготовительных операций в указанной ниже последовательности. Проверить давление воздуха в шинах транспортного средства и при необходимости довести до нормы. Проверить шины транспортного средства на отсутствие повреждений и отслоения протектора, которые могут привести к разрушению шины при торможении на стенде. Осмотреть колеса транспортного средства и убедиться в надежности их крепления и отсутствии инородных предметов между сдвоенными колесами. При необходимости загрузить транспортное средство так, чтобы обеспечить весовые показатели его осей не менее 90 % от максимально допустимых. Показатели максимально допустимой массы, приходящейся на оси транспортного средства, можно определить с помощью инструкции по эксплуатации или специальной таблички, установленной на транспортном средстве. При нагружении осей транспортного средства категорий М1, N можно использовать специально подготовленный балласт тарированной массы. Для транспортных средств прочих категорий следует использовать имитатор нагрузки. Поскольку нагружение требуется, как правило, только для задних осей транспортных средств (за исключением категории О), оно может быть произведено после проверки тормозов передней оси. Для транспортного средства категории М1 балласт можно разместить в задней части пассажирского салона на сиденьях или на полу, а при наличии багажного отсека балласт можно разместить там. Для транспортных средств прочих категорий следует выбрать какой-либо силовой элемент (элементы) рамы транспортного средства или несущего кузова, пригодный для приложения значительной силы в направлении вниз, обладающий для этого достаточной прочностью, жесткостью и расположенный желательно сзади проверяемой оси по ходу движения. Данный элемент (элементы) охватывается стяжными ремнями имитатора нагрузки. При этом необходимо следить, чтобы ремни располагались симметрично относительно продольной оси транспортного средства и обеспечивали симметричное распределение нагрузки (на грузовых транспортных средствах рамной конструкции и прицепах целесообразно применять специально изготовленную из стального профиля жесткую поперечную балку, которая кладется на верхние полки лонжеронов рамы и охватывается ремнями). Заведенные ремни следует пропускать так, чтобы при натяжении они не повредили находящиеся поблизости детали, пневматические и электрические коммуникации транспортного средства. Свободные концы ремней пропускаются в проушины гидравлических цилиндров имитатора нагрузки, штоки которых должны быть выведены в крайнее выдвинутое положение, вставляются в пазы стяжных приспособлений и слегка подтягиваются поворотом рукояток храповых механизмов, после чего рукоятки устанавливаются в зафиксированное положение. Для приведение в действие имитатора следует въехать проверяемой осью на барабаны тормозного стенда и привести в действие гидроцилиндры в направлении вниз, при этом по монитору стенда необходимо следить за нарастанием нагрузки. Суммарное значение нагрузки на левом и правом роликовых агрегатах является контролируемым значением веса оси. После достижения заданной нагрузки следует отключить привод имитатора. Замечание. В процессе нагружения транспортного средства с пневмопод- веской его двигатель должен работать на холостом ходу, а стояночный тормоз — деактивирован. Это требование касается также тягачей при имитации нагрузки осей прицепов и полуприцепов. Подключить датчик давления к питающему контуру пневмосистемы. Войдя в соответствующее меню программы управления тормозным стендом, проверить работоспособность датчика путем считывания текущего значения давления в пневмосистеме. Для прицепов и полуприцепов датчик устанавливается на контрольном выводе питающей магистрали прицепа. Оценить степень нагрева элементов тормозных механизмов проверяемой оси органолептическим методом. Температура элементов тормозных механизмов должна быть не более 100 °С. Оптимальными для проверки можно считать такие условия, при которых нагрев тормозных барабанов (дисков) позволяет удерживать незащищенную руку человека...

Антиблокировочная система (ABS)

При экстренном торможении с обычной тормозной системой существует опасность блокировки колес и заноса автомобиля. Система ABS решает эту проблему, регулируя давление в системе тормозного привода таким образом, что блокировка колес предотвращается на любом дорожном покрытии, а автомобиль остается управляемым. Устойчивость автомобиля при движении должна сохраняться как на сухом асфальтовом покрытии, так и на скользкой дороге и при любом качестве дорожного полотна, а автомобиль должен оставаться легко управляемым для «обычного» водителя. Основные функции системы ABS и ее устройство На рисунке представлен автомобиль с системой ABS. Для регулирования процессом торможения блок управления получает входную информацию от датчиков вращения колес, которые сообщают блоку управления угловую скорость вращения колес. В результате обработки этой информации в блоке управления определяется контрольная скорость автомобиля, которая учитывается при процессах регулирования. Рисунок. Легковой автомобиль с системой ABS Датчик угловой скорости вращения Колесный тормозной цилиндр Гидроагрегат с главным тормозным цилиндром Блок управления Сигнальная лампа Любое изменение угловой скорости вращения одного или нескольких колес фиксируется и при сильном снижении скорости вращения в пределах одного промежутка времени или относительно контрольной скорости воспринимается как опасность блокировки. Для предотвращения блокировки тормозное усилие сначало поддерживается на уровне достигнутого значения и не понижается (удержание тормозного усилия). Если вращение колеса продолжает замедляться, то тормозное усилие снижается, в результате чего колесо притормаживается меньше. При этом обеспечивается возможность возобновления ускорения колеса, вследствие чего автомобиль остается управляемым. При достижении некоторого предельного значения блок управления определяет необходимость повышения тормозного усилия для предотвращения прокручивания колес (повышение тормозного усилия). После этого процесс регулирования начинается заново. В зависимости от качества дорожного полотна могут выполняться от 4 до 10 циклов регулирования в секунду до нижнего порога регулирования, составляющего прибл. 4 км/ч. При выполнении всех процессов — удержание, снижение, повышение тормозного усилия — блок управления управление одним или несколькими электромагнитными клапанами, которые в гидроагрегате объединены в один узел. В зависимости отпроизводителя существуют три варианта регулирования: а) одновременное регулирование одного из передних колес и одного заднего колеса по диагонали. б) передние колеса регулируются по отдельности, а задние колеса регулируются вместе. В данном случае говорят о регулировании по колесу с большей склонностью к блокировке, то есть регулировка выполняется всегда по тому колесу, которое ближе всего к границе блокировки. Эта система использьзуется чаще всего. в) регулирование тормозного усилия для каждого отдельного колеса является оптимальным, но и самым дорогим решением. Все современные системы ABS имеют функцию самодиагностики и энергонезависимую память ошибок. Блок управления постоянно выполняет самодиагностику и диагностику подключенных компонентов, начиная с зажигания. При обнаружении неисправности в системе ABS, блок управления отключается, на панели приборов загорается сигнальная лампочка, оповещающая водителя о том, что тормозная система работает в обычном режиме без ABS-регулирования. Датчик угловой скорости вращения колес Во всех системах ABS принцип действия датчика одинаковый. Существуют, однако, разные виды датчиков угловой скорости вращения. Но все они в результате вращения ипульсного колеса, соединенного со ступицей колеса (иногда с дифференциалом), создают синусоидальное переменное напряпряжение. Частота переменного напряжения прямопропорциональна угловой скорости вращения колеса. Работа и сигналы датчика скорости вращения постоянно контролируются и анализируются блоком управления, начиная со скорости движения 4-6 км/ч. Рисунок. Датчик угловой скорости вращения (в разрезе) а) Датчик угловой скорости вращения DF2...

Механизм вспомогательного тормоза

Вспомогательная тормозная система

Эта система, обеспечивающая торможение двигателем, применяется на затяжных спусках при движении ТС с постоянной скоростью с целью разгрузки тормозов рабочей тормозной системы, которые при частом пользовании могут перегреваться. Вспомогательная тормозная система в виде моторного тормоза-замедлителя имеет заслонки в выпускных трубопроводах двигателя. За счет дросселирования продуктов сгорания в цилиндрах двигателя создается сопротивление вращению коленчатого вала. Например, вспомогательный тормоз автомобилей «Урал» с дизелем состоит из привода и двух исполнительных механизмов, установленных в трубопроводах системы выпуска отработавших газов из цилиндров. Механизм вспомогательного тормоза включает в себя корпус 7 с фланцем для крепления к выпускному трубопроводу, заслонку 3, вал 4 и рычаг поворотный 2 вала заслонки. Когда тормоз не включен, заслонка расположена вдоль потока отработавших газов по оси приемных труб глушителя. Привод управления вспомогательным тормозом выполнен пневматическим. Он состоит из крана управления, закрепленного на панели кабины, пневмоцилиндров и кнопки управления, расположенной около педали сцепления. В системе имеются три пневмоцилиндра, два из которых предназначены для управления заслонками выпускных трубопроводов, а один — для отключения подачи топлива. Рис. Механизм вспомогательного тормоза: 1 — корпус; 2 — поворотный рычаг вала заслонки; 3 — заслонка; 4 — вал заслонки При нажатии на кнопку крана управления сжатый воздух из пневмосистемы подается к двум пневмоцилиндрам, поршни которых перемещаются и при помощи штоков устанавливают заслонки 3 механизмов перпендикулярно потоку отработавших газов, создавая сопротивление их выпуску. Одновременно воздух подается от крана к пневмоцилиндру, расположенному на крышке топливного насоса высокого давления. Подача топлива прекращается, и двигатель работает в тормозном режиме, т.е. при работе вспомогательного тормоза цилиндры двигателя переключаются на работу в режиме компрессора: топливо не подается, а воздух поступает и сжимается при перемещении поршней. Двигатель поглощает часть энергии ТС, затрачивая ее на сжатие воздуха в цилиндрах. Воздух, поступающий в цилиндры, сжимается, а затем под действием поршней выталкивается в выпускной трубопровод, давление в котором в результате закрытия заслонок резко возрастает. Создаваемое противодавление не должно превышать 0,3 МПа, иначе сила, действующая на выпускные клапаны цилиндров двигателя, превысит усилие их прижатия к своим гнездам. Поскольку при работе тормоза подача топлива прекращается, его сгорания не происходит, а поршни перемещаются в цилиндрах под воздействием вращения колес автомобиля и передачи этого вращения через детали трансмиссии коленчатому валу.

Схемы колесных тормозов

Тормозная система. Виды тормозных систем

Тормозная система — это совокупность устройств, предназначенных для регулирования скорости движения, ее снижения до необходимого уровня или полной остановки машины. Современные автомобили и колесные тракторы оборудуют рабочей, запасной, стояночной и вспомогательной автономными тормозными системами. Рабочая тормозная система служит для снижения скорости движения с желаемой интенсивностью вплоть до полной остановки машины вне зависимости от ее скорости, нагрузки и уклона дорог, для которых она предназначена. Запасная тормозная система предназначена для плавного снижения скорости движения или остановки машины в случае полного или частичного выхода из строя рабочей тормозной системы (например, в автомобиле КамАЗ-4310). Эффективность рабочей и запасной тормозных систем машин оценивают по тормозному пути или установившемуся замедлению при начальной скорости торможения 40 км/ч на прямом и горизонтальном участках сухой дороги с твердым покрытием, обеспечивающих хорошее сцепление колес с дорогой. Стояночная тормозная система служит для удержания неподвижной машины на горизонтальном участке пути или уклоне даже при отсутствии водителя. Эффективность стояночной тормозной системы должна обеспечивать удержание машины на уклоне такой крутизны, который она сможет преодолеть на низшей передаче. Вспомогательная тормозная система предназначена для поддержания постоянной скорости машины при движении ее на затяжных спусках горных дорог и регулирования ее самостоятельно или одновременно с рабочей тормозной системой с целью разгрузки тормозных механизмов последней. Эффективность вспомогательной тормозной системы должна обеспечивать без применения иных тормозных систем спуск машины со скоростью 30 км/ч по уклону 7 % протяженностью 6 км. Каждая тормозная система состоит из тормозных механизмов (тормозов) и тормозного привода. Торможение машины достигается работой сил трения в тормозном механизме, которая превращает кинетическую энергию движения машины в теплоту в зоне трения тормозных накладок с тормозным барабаном или диском. В зависимости от типа привода различают тормозные системы с гидравлическим, пневматическим и пневмогидравлическим приводом. Тормозные механизмы (тормоза) бывают дисковые и колодочные, а в зависимости от места установки — колесные и трансмиссионные (центральные). Колесные устанавливают непосредственно на ступице колеса, а трансмиссионные — на одном из валов трансмиссии. На большегрузных автомобилях и мощных тракторах чаще всего применяют системы торможения с пневматическим приводом и колодочными тормозами. Колодочный тормоз затормаживает шкив 9 двумя колодками 5 с фрикционными накладками, которые прижимаются к шкиву 9 изнутри разжимным кулачком 4. При этом верхние концы колодок 5 поворачиваются вокруг неподвижных шарниров (осей) 7. Если отпустить педаль 1, то стяжные пружины 8 растормозят шкив 9. Дисковый тормоз трактора МТЗ-80 имеет диски 14 и 16 с фрикционными накладками, установленные на вращающемся валу 6 возможностью передвижения в осевом направлении. Между ними размещены два нажимных диска 12 и 15, соединенные серьгами 11 с тягой 10 и тормозной педалью 1. Между нажимными дисками в углублениях со скосами установлены разжимные шарики 13. При торможении шарики раздвигают нажимные диски, которые прижимают вращающиеся диски с фрикционными накладками к неподвижному картеру 17 и затормаживают вал 6. Рисунок. Схемы колесных тормозов: а — колодочного; 6 — дискового; 1 — педаль; 2 — тяга; 3 — рычаг; 4 — разжимной кулачок; 5 — колодка; 6 — затормаживаемый вал: 7 — оси повороти колодок; 8 — стяжные пружины; 9 — тормозной шкив; 10 — тяга с регулировочной гайкой; 11 — серьга; 12, 75 — нажимные диски; 13 — шарик; 14, 16 —...

Гидравлический привод тормозов автомобиля

Гидравлический привод колесных тормозов состоит из главного цилиндра, цилиндров колесных тормозов и магистралей. Главный цилиндр 4 отлит из чугуна вместе с резервуаром для тормозной жидкости и сообщается с ним через два отверстия: перепускное 7 и компенсационное 8. Через отверстия 6 в пробке 5 резервуар сообщается с атмосферой. Поршень 21, изготовленный из алюминиевого сплава, уплотняется в главном цилиндре резиновыми манжетами 19 и 24. В передней части поршня имеются шесть отверстий 22, перекрываемых звездообразной пружинной пластинкой 20. Перемещение поршня вперед осуществляется педалью 26 ножного тормоза через шток 23. Перемещение поршня назад ограничивается упорной шайбой 3, которая удерживается в цилиндре замочным кольцом 2. В передней части цилиндра расположен и впускной клапан 17, в котором в свою очередь установлен выпускной клапан 15. Выпускной клапан удерживается в закрытом положении пружиной 16, а впускной — пружиной 18. Пружина впускного клапана одновременно удерживает поршень в исходном заднем положении. Рис. Схема гидравлического привода колесных тормозов: 1 — защитный чехол; 2 — замочное кольцо; 3 — упорная шайба; 4 — главный цилиндр; 5 — пробка; 6 — отверстие для сообщения с атмосферой; 7 — перепускное отверстие; 3 — компенсационное отверстие; 9 — тормозной барабан; 10 — тормозная колодка; 11 — поршень цилиндра колесного тормоза; 12 — манжета; 13 — цилиндр колесного тормоза; 14 — шток поршня; 15 — выпускной клапан; 16 — пружина выпускного клапана; 17 — впускной клапан; 13 — пружина впускного клапана; 19 и 24 — манжеты поршня; 20 — пластина; 21 — поршень главного цилиндра; 22 — отверстие в поршне; 23 — шток поршня главного цилиндра; 25 — стяжная пружина колодок; 26 — педаль ножного тормоза; 27 — пружина педали В цилиндре, 13 колесного тормоза находятся два поршня 11, уплотняемые манжетами 12. Манжеты прижимаются к поршням разжимной пружиной. Поршни через штоки 14 воздействуют на колодки 10. Главный цилиндр соединяется с цилиндрами колесных тормозов металлическими трубопроводами и резиновыми шлангами. Главный цилиндр, трубопроводы и цилиндры колесных тормозов заполнены специальной тормозной жидкостью. Заполнение системы тормозной жидкостью производится через горловину в главном цилиндре, закрытую пробкой 5. Работает гидравлический привод тормозов следующим образом. При нажатии на тормозную педаль 26 поршень 21 главного цилиндра, перемещаясь вперед, перекрывает компенсационное отверстие 8. При дальнейшем перемещении поршня давление жидкости в цилиндре возрастает, выпускной клапан 15 открывается и тормозная жидкость поступает по трубопроводам в цилиндры 13 колесных тормозов. Под давлением тормозной жидкости поршни 11 раздвигаются и прижимают колодки. 10 к тормозному барабану 9. Происходит торможение колес. Когда прекратится нажатие на педаль ножного тормоза, поршень в главном цилиндре под действием пружины 18 начнет возвращаться в исходное положение. При этом давление в системе привода упадет, пружина 25 возвратит колодки 10 в исходное положение и тормозная жидкость через впускной клапан 17 вытеснится обратно в главный цилиндр. Для безотказной работы тормозов важно, чтобы в трубопроводах и шлангах не было воздуха, который легко сжимается, и поэтому в системе не создается достаточного давления для получения необходимого тормозного усилия. Подсос воздуха в гидравлическую систему предупреждается тем, что при отпущенной педали в гидравлическом приводе поддерживается давление, немного превышающее атмосферное, благодаря упругости пружины 18, удерживающей впускной клапан 17 в закрытом положении. При резком отпускании педали...

Эволюция электрических тормозных систем

Электрический тормоз

Разработки многих разделов в области электрических тормозов продвинулись весьма далеко. Однако постепенно приходит осознание того, что полностью электрическая работа тормозов, то есть с удалением гидравлической/механической связи, будет все же реализована несколькими годами позже. Тем не менее, уже сейчас функции тормозной системы претерпевают плавную и непрерывную эволюцию. Полностью электрическая система тормозов обеспечивает значительные функциональные и конструктивные преимущества. Некоторые из них состоят в следующем: безопасность — сокращенное время реакции всего на полсекунды смогло уменьшить число летальных исходов при лобовых столкновениях приблизительно на 30-50%; окружающая среда — тормозная жидкость ядовита и требует замены в течение срока службы транспортного средства; управление — последовательный и интегрированный подход поможет реализации и других функций, например, таких как адаптивный круиз-контроль и контроль устойчивости; комфорт — более слабое и регулируемое усилие на педаль, а также возможность реализации режима движения типа «подъем-спуск» служат хорошим дополнением к мастерству водителя. Необходимость применения отказоустойчивой электрической системы и соображения относительно ее стоимости пока приводят к тому, что все текущие разработки сохраняют гидравлическую систему. На рисунке показана эволюция тормозных систем и направления их будущего проектирования. Рис. Эволюция электрических тормозных систем (источник: Infineon) В 1978 г. компания Bosch выпустила первую электронно-управляемую антиблокировочную тормозную систему (ABS); девять лет спустя компания подарила миру систему управления тягой (TCS). Следующим новшеством стала выпущенная в 1995 г. программа электронной устойчивости (ESP). Самой передовой в современном автомобилестроении является система электрогидравлических тормозов (electro-hydraulic brake — EHВ) ), также известная как контроль тормозов Sensotronic (Sensotronic Brake Control — SBC). Она было разработана совместными усилиями компаний Bosch к Mercedes. Компания Boech серьезно исследовала систему полностью электрических тормозов, но отложила ее в сторону по техническим причинам. Пока в автомобиле нет полностью избыточной, то сеть дублированной сети питания 42 В, вероятность того, что эта технология находится на пути внедрения в качестве стандартной, не слишком велика. Компания Bosch следует идее выпуска серий масштабируемых изделий в определенных диапазонах, базирующихся на технологии ESP, то есть номенклатуры изделий, чьи особенности и спецификации работы могут быть расширены. В отличие от существующей технической концепции электрогидравлического тормоза, это новое устройство основано на обычной системе торможения. Однако устройство может выполнять все связанные с водителем дополнительные функции за счет электрогидравлических средств (посредством проводов), не требуя сложных и дорогостоящих изменений в электрической системе автомобиля. Компания работает над повышением безопасности и/или удобства и расширением возможностей своих систем: электронный тормоз с предустановкой — если водитель внезапно снимет свою ногу с педали акселератора, то тормозная система получает предупреждение о потенциально аварийной ситуации. Тормозные колодки немедленно перемещаются к дискам тормоза так, чтобы не было никакой задержки, замедления транспортного средства, если будет предпринято чрезвычайное торможение; вытирание тормозных дисков — при сильном дожде тормозные диски покрывает влажная пленка. Тормозные колодки выполнены таким образом, чтобы на краткое время регулярно касаться дисков, удаляя пленку воды и помогая тормозам при необходимости быстрее войти в контакт с поверхностью тормозного барабана; мягкая остановка — эта функция способствует плавному торможению без рывков за счет сокращения тормозного давления незадолго до того, как транспортное средство полностью остановится; контроль удержания на подъеме — предотвращение неумышленного скатывания назад при стартах на уклонах. Тормозная система автоматически поддерживает тормозное давление и останавливает транспортное средство, катящееся...

Влияние механизмов управления и тормозной системы на эффективность и безопасность работы

Влияние механизмов управления и тормозной системы на эффективность и безопасность работы

Чем легче и удобнее рулевое управление, меньше радиус поворота, больше предельная скорость при повороте и меньше количество энергии, затрачиваемое на управление при движении по заданной траектории, тем лучше управляемость и поворачиваемость машины, а следовательно, выше ее производительность и экономичность. Повышение рабочих скоростей МТА приводит к ухудшению поворачиваемости и качества работы при выполнении сельскохозяйственных процессов, а при увеличении радиусов поворота на поворотных полосах больше уплотняется почва, а следовательно, снижается урожайность сельскохозяйственных культур. Итак, рулевое управление должно обеспечивать сохранение заданного направления движения (заданного курса), а при соответствующем воздействии изменять его по требуемой траектории, от чего зависит безопасность движения. Способность к принудительному снижению скорости и быстрой остановке — важнейшее свойство машины, влияющее на ее эксплуатационные показатели (производительность, расход топлива и др.) и имеющее большое значение для безопасности движения. Техническое состояние тормозной системы существенно влияет на безопасность движения. Эффективность торможения при скорости движения 40 км/ч должна соответствовать данным таблицы. Таблица. Тормозной путь и допустимое замедление автомобиля (начальная скорость торможения 40 км/ч) Автомобиль Тормозной путь, м, не более Установившееся замедление, м/с Легковой 16,2 5,2 Грузовой 23 4 Автопоезд 25 4 В таблице приведены значения тормозного пути автомобилей от начала действия тормозного механизма. Однако общий тормозной путь машины в действительности больше. Слагаемые общего тормозного пути: путь, пройденный автомобилем за период времени от момента принятия водителем решения тормозить до момента нажатия на педаль тормоза (время реакции водителя) путь, пройденный автомобилем за время срабатывания привода тормозной системы непосредственно тормозной путь, когда начинается торможение Следовательно, в действительности от принятия водителем решения о торможении и до полной остановки машина проходит гораздо больший путь. Время реакции водителя составляет 0,4…2 с в зависимости от его физического и психоэмоционального состояния. Время срабатывания привода тормозной системы при ее полной исправности должно быть 0,6…0,9 с. Длина тормозного пути зависит от силы сцепления шин автомобиля (трактора) с дорожным покрытием, состояния дорожного покрытия, скорости движения, исправности тормозной системы, состояния шин и давления воздуха в них. На мокром асфальтобетоне по сравнению с сухим тормозной путь увеличивается примерно на 30 %, при гололеде — в 5…10 раз. Все это ухудшает условия безопасности работ на тракторах и автомобилях. Тормозной путь пропорционален квадрату скорости движения. Например, если скорость автомобиля увеличивается в 3 раза (с 20 до 60 км/ч), то тормозной путь возрастает в 9 раз и т. д.

Электромеханическая тормозная система

Электромеханические тормозные системы

Дальнейшим шагом развития тормозных систем являются электромеханические тормозные системы. Электромеханическая тормозная система состоит из блока управления (процессора) 9, который имеет связь с датчиками и исполнительными механизмами системы, тормозной педали 10 с имитатором чувствительности торможения 7, приводных механизмов колес 5 и 13. В приводных механизмах задних колес вмонтированы механизмы стояночного тормоза, который управляется включателем 11 из салона автомобиля. Рис. Электромеханическая тормозная система: 1 – суппорт; 2 – фрикционная накладка; 3 – тормозной диск; 4 – датчик частоты вращения колеса; 5 – приводной механизм; 6 – электрическая колодка; 7 – имитатор чувствительности торможения; 8 – подсоединение бортовой электрической сети; 9 – центральный процессор и контроль АКБ; 10 – тормозная педаль; 11 – включатель стояночной тормозной системы; 12 – бортовая электрическая сеть; 13 – приводной механизм с встроенным механизмом стояночного тормоза В отличие от гидравлических и электрогидравлических тормозных систем в электромеханических системах тормозная сила воздействует на тормозной диск вместо традиционной скобы. Тормозная  система приводится в действие тормозной педалью, которая через потенциометр связана с электронным блоком управления. Сигнал, зависящий от скорости и усилия нажатия на тормозную педаль, передается в блок управления.  В  нем в зависимости от режима движения и процесса торможения (частота вращения затормаживаемого колеса, уклонение колеса от прямолинейного курса, поперечное ускорение) поступающие сигналы перерабатываются и рассчитываются электрические величины для оптимальной тормозной силы. Рассчитанные электрические величины передаются в  приводной механизм колеса для осуществления процесса торможения. Тормозной механизм колеса показан на рисунке: Рис.  Тормозной механизм электромеханической тормозной системы: 1 – кулак; 2 – подшипник; 3 – статор; 4 – ходовой винт (шпиндель); 5 – ротор; 6 – сателлитная шестерня; 7 – солнечная шестерня; 8 – тормозной диск; 9 – тормозная колодка Тормозной механизм представляет собой вмонтированный в привод колеса электродвигатель состоящий из статора 3 и вращающегося ротора 5, установленного на подшипниках. Внутренняя часть ротора является коронной шестерней в зацеплении с которой находятся сателлитные шестерни 6, которые приводят во вращение солнечную шестерню 7. Внутри ротора 5 установлен ходовой винт 4. При подаче тока определенной величины в статор, ротор начинает вращаться и ходовой винт передвигается с разной скоростью, на разную величину перемещения, а также может менять направление движения в зависимости от характера вращения ротора. Ходовой винт, соединенный с колодкой, в зависимости от дорожных условий и характера торможения воздействует на тормозную колодку, прижимая или отводя ее от тормозного диска. Стояночный тормоз представляет собой дополнительный встроенный механизм в тормозной механизм колеса, который прижимает тормозные колодки к диску при подаче тока на приводной механизм с стояночного тормоза. Управление стояночным тормозом осуществляется от кнопки, с помощью которой замыкается электрическая цепь. Применение электромеханических тормозных систем имеет ряд следующих преимуществ: оптимальное соотношение тормозных сил и стабилизация по устойчивости автомобиля при движении оптимальная чувствительность тормозной педали, что уменьшает тормозной и остановочный путь бесшумный привод и отсутствие вибраций педали характерной для гидропривода с АБС безопасное перемещение педального модуля при ДТП отсутствие вакуумного усилителя для привода тормозной системы Электромеханические тормозные системы могут выполнять функции АБС, систем курсовой устойчивости, противобуксовочных систем и т.д.  По сравнению с гидравлическими системами они работают бесшумно, имеют меньшее количество составляющих тормозной системы и более экологичны, ввиду отсутствия в системе тормозной жидкости.

Схема стояночного тормоза с механическим приводом

Стояночная тормозная система с механическим приводом

Стояночная тормозная система предназначена для затормаживания автомобиля на стоянках и удержания груженого автомобиля на уклоне до 25 %. Она может применяться в качестве запасной в случае отказа рабочей тормозной системы. При этом усилие на ручном рычаге тормоза в зависимости от категории транспортного средства должно составлять 400 Н (категория М1) и 600 Н (категории М2, M3, N1—N3), а на ножном — соответственно 500 и 700 Н. В зависимости от места установки тормоза стояночные системы подразделяются на трансмиссионные и колесные. На полноприводных автомобилях (ЗИЛ, «Урал» и др.) стояночный тормоз, как правило, установлен на валу раздаточной коробки и имеет механический привод из кабины водителя. Рис. Схема стояночного тормоза с механическим приводом: 1, 10, 15, 18, 20 — тяги; 2 — полый рычаг управления; 3, 6, 11, 13, 17, 19, 21 — рычаги; 4 — фиксатор; 5 — неподвижный зубчатый сектор; 7, 16 — кронштейны; 8 — болт; 9 — валик; 12 — скоба; 14 — пружина скобы; 22 — разжимной кулак; 23 — тормозная колодка; 24 — стяжные пружины; 25 — болт крепления регулировочного рычага Тормозной щит стояночного тормоза колодочного типа прикреплен к крышке подшипника вала привода заднего моста, а тормозной барабан установлен на фланце этого вала. Механический привод представляет собой систему тяг и рычагов, соединяющих ножную педаль или рычаг управления с тормозным механизмом. Как правило, рычаг управления 2 тормозным механизмом выполнен полым. Внутри его проходит тяга 7, связанная с фиксатором 4 зубчатого сектора 5. При повороте рычага управления посредством системы тяг и рычагов приводится в действие рычаг 21 разжимного кулака 22, который поворачивает тормозные колодки 23, прижимая их к поверхности тормозного барабана. В расторможенном состоянии колодки прижаты стяжными пружинами 24 к разжимному кулаку. Для регулировки зазоров между тормозным барабаном и колодками рычаг управления перемещают в крайнее нижнее положение. В соединении скобы 12 с рычагом 13 тормозного крана устанавливают зазор до 2 мм, изменяя длину тяги 75, связанную с рычагом 17 привода. Зазоры регулируют изменением длины тяги 18 с помощью винтового соединения и перестановкой рычага 21 на шлицах разжимного кулака. Зазор, как правило, должен составлять 0,3 …0,6 мм. Тяги и рычаги связаны между собой при помощи пальцев и зашплинтованы. Рычаг б установлен на валике 9 на шпонке. Разжимной кулак, его втулку и оси в приводе тормоза смазывают графитной смазкой.

Тормозная система

Тормозная система

Торможение — это процесс создания и изменения сопротивления движению транспортного средства. Тормозная система — совокупность всех технических средств, обеспечивающих торможение транспортного средства и (при необходимости) его неподвижное состояние. Тормозная система является одной из основных систем управления современного транспортного средства. В связи с наблюдающейся в мировом автомобилестроении тенденцией к увеличению скорости и приемистости легковых, увеличению грузоподъемности грузовых и пассажировместимости пассажирских транспортных средств значение тормозных систем в обеспечении безопасности на дорогах постоянно повышается. Поэтому производители транспортных средств стремятся совершенствовать эту систему с целью повышения ее эффективности и надежности. Кроме того, создана развитая нормативная база, регламентирующая требования к конструктивному исполнению и показателям работы тормозных систем. Основным документом, в котором отражены технические требования к тормозным системам, являются Правила ЕЭК ООН № 13. К настоящему времени этот нормативный документ, принятый более 30 лет назад, претерпел четыре пересмотра, что свидетельствует о постоянно ведущейся работе по совершенствованию тормозных систем, а также по закреплению в нормативной документации новых эффективных технических решений. Данный документ основывается на результатах лабораторных и дорожных испытаний, которые лишь частично можно осуществить при периодической проверке технического состояния. Кроме того, требования по показателям тормозных систем в Республике Беларусь регламентированы СТБ 1641-2006.

Механизм стояночного тормоза

Стояночный тормоз винт-гайка

Такие тормозные механизмы для стояночного тормоза применяются в ряде зарубежных автомобилей. Ниже приводится конструкция и принцип работы стояночного тормоза, применяемого на автомобилях Вольво. При подъеме рычага стояночного (ручного) тормоза трос перемещается относительно оплетки, опирающейся на кронштейн 9 и за рычаг 8 поворачивает вокруг оси вал 7, на другом конце которого расположена пластина 6 с тремя коническими гнездами переменной глубины. В каждом гнезде находится шарик 11. Вместе с кольцом 10 эти детали образуют механизм, который при проворачивании за­ставляет вал 7 перемещаться в осевом направлении. Конические гнезда выполнены так, что первоначально большое, по отношению к вращательному, осевое перемещение, становится малым тем самым увеличивая передава­емое усилие. Осевое перемещение вала 7 передается на головку винта 5, который, сжи­вая пружину 12, через гайку 4 передает усилие поршню 3, смонтированному в плаваю­щей скобе 13, и вместе со скобой, действуя через тормозные колодки 2, зажимает тор­мозной диск 1. Эффект саморегулирования стояночного тормоза происходит за счет то­го, что по мере износа пары «тормозные колодки — тормозной диск» появляется увели­ченный зазор и, не встречая сопротивления, вал 7 проворачивает винт 5 относительно гайки 4, что приводит к уменьшению зазора между тормозными колодками и диском. Пара «винт-гайка» (поз. 5 и 4) имеет люфт в резьбовом соединении, что позволяет тор­мозному механизму освободить тормозной диск, когда стояночный тормоз не задейст­вован. Рис. Механизм стояночного тормоза: 1 – тормозной диск; 2 – тормозные колодки; 3 – поршень; 4 – гайка; 5 – винт; 6 – пластина; 7 – вал; 8 – рычаг; 9 – кронштейн; 10 – кольцо; 11 – шарик; 12  пружина; 13 – плавающая скоба Привод стояночного тормоза осуществляется обычно через трос его натяжением рукой от рукоятки рычага, однако некоторые автомобили могут иметь ножное педальное управление стояночным тормозом. Примером может служить автомобиль Фаэтон фирмы Фольксваген. Привод троса педального управления состоит из педали, барабана, тросов торможения и растормаживания, петлевой пружины. Прилагаемая к педали сила передается тросом на уравнитель, расположенный под днищем автомобиля. Уравнитель распределяет приводное усилие между двумя тросами, приводящими в действие задние тормозные механизмы. Рис. Привод тросового стояночного тормоза барабанного типа: 1 – педаль стояночного тормоза; 2 – барабан; 3 – петлевая пружина; 4 – крепление наконечника троса; 5 – пластмассовая пружина; 6 – трос торможения; 7 – трос растормаживания; а – затормаживание; б — растормаживание При нажатии на педаль тормоза петлевая пружина прижимается к барабану, увеличивая силы трения о него и противодействуя перемещению педали в обратном затяжке тормоза направлении.  В результате производится практически бесступенчатое и бесшумное фиксирование педали. Нажатие на тормозную педаль вызывает поворот барабана и натяжение троса торможения. Чтобы разблокировать стояночный тормоз, необходимо рукой нажать на специальный рычаг. При нажатии на рычаг устройства растормаживания наконечник его троса подтягивается вверх. В результате петлевая пружина разжимается, освобождая при этом барабан, и педаль возвращается в исходное положение. Этот принцип позволяет производить растормаживание с минимальными усилиями. Рис. Схема работы петлевой пружины: а – затяжка тормоза; б — растормаживание Педальное управление может быть и сегментного типа. Педаль 1 стояночного тормоза соединена с тросом через зубчатую рейку 9. Одна сторона зубчатой рейки жестко связана с тросом 13. Зубчатая рейка ходит в направляющем рычаге 8, который шарнирно соединен...

✪Устройство автомобиля Авто⚡сайт №❶