Общее уcтройство и характерные параметры поршневых двигателей

Общее уcтройство и характерные параметры поршневых двигателей

Поршневые двигатели внутреннего сгорания представляют собой комплекс механизмов и систем, обеспечивающий преобразование в механическую работу части тепловой энергии, выделяющейся при сгорании топлива непосредственно в цилиндрах.

Схема устройства типичного поршневого двигателя внутреннего сгорания

Рис. Схема устройства типичного поршневого двигателя внутреннего сгорания:
а) продольный вид; б) поперечный вид

Схема типичного поршневого двигателя внутреннего сгорания показана на рисунке. В зависимости от назначения и класса таких двигателей их конструкции имеют различную сложность, но все они состоят из следующих основных деталей: цилиндра 5, крышки цилиндра 1, поршня 4 , шатуна 14, вала 8, маховика 7 и картера 6.

Цилиндр, его крышка, картер и различные вспомогательные корпусные и прочие неподвижные элементы конструкции двигателя прочно скрепляются между собой с помощью резьбовых соединений, а некоторые из них, как картер и цилиндры, в автомобильных двигателях часто отливаются совместно.

Цилиндр 5 с помощью фланца крепится к верхней половине картера 6 и закрывается крышкой 1, называемой головкой цилиндра.

Картер служит основанием для цилиндров, в нем также размещается вал 8 двигателя. Картер автомобильных двигателей изготовляется литым, чаще всего разъемным, состоящим из двух половин, стенки его усиливаются ребрами жесткости. Нижней, не несущей его частью является литой или штампованный поддон 9.

В цилиндр 5 вставлен поршень 4, имеющий форму стакана, с повернутым в сторону головки цилиндра днищем. При движении поршня стенки цилиндра служат для него направляющими. Уплотняется цилиндр поршневыми кольцами 2. В полости цилиндра, заключенной между днищем поршня и крышкой 7, происходят все основные и вспомогательные процессы, связанные с окислением (сжиганием) топлива и преобразованием части выделяющегося при этом тепла в механическую работу.

Перемещение поршня в цилиндре передается на вал 8 с помощью связующего их звена — шатуна 14, имеющего форму профильного стержня с двумя головками. Одна головка, соединяющая его стержень с шейкой 11 колена или кривошипа вала 8, называется большой, или нижней, головкой. Другая головка, через отверстие которой проходит поршневой палец 3, обеспечивающий необходимое шарнирное соединение шатуна с поршнем, называется малой или верхней головкой.

Длина шатуна определяется величиной l, равной расстоянию между осями его верхней и нижней головок. Для каждого цилиндра или группы их на валу 8 имеется отдельное колено, образованное цапфой 11 кривошипа, щеками 10 и опорными шейками 13, поэтому вал двигателя называют коленчатым.

Размер кривошипа (колена) определяется радиусом r, равным расстоянию между осью вращения коленчатого вала и осью цапфы кривошипа.

В двигателях с разъемным картером коленчатый вал вращается в опорных подшипниках 12, расположенных в верхней части картера 6. Эти подшипники и соответствующие им опорные шейки 13 коленчатого вала называют коренными. Цапфу 11 кривошипа, шарнирно связывающую вал 8 с нижней головкой шатуна 14, в двигателях автомобильного типа называют шатунной шейкой.

В судовых и стационарных двигателях цапфу кривошипа называют иногда мотылевой; коренные шейки 13 — рамовыми, а часть корпуса (остова), несущую коренные опоры, — рамой.

На коленчатом валу 8 крепится маховик 7, выполненный в виде литого диска с массивным ободом. Энергия маховика, накапливаемая им при вращении, расходуется на вспомогательные процессы в цилиндре двигателя. В одноцилиндровых двигателях кинетическая энергия маховика обеспечивает вывод кривошипно-шатунного механизма из мертвых (крайних) его положений.

Безразмерной характеристикой кривошипно-шатунного механизма считают отношение радиуса r кривошипа к длине l шатуна. В поршневых двигателях внутреннего сгорания это отношение определяется из условий незадевания шатуна за стенку цилиндра и поршня о коренные подшипники при внешнем крайнем его положении.

В двигателе с кривошипно-шатунным механизмом возвратнопоступательное движение поршня вдоль оси цилиндра вызывает вращательное движение коленчатого вала около своей продольной оси, расположенной перпендикулярно коси цилиндра. И, наоборот, вращение коленчатого вала вызывает соответствующее перемещение поршня в цилиндре.

Для двигателя, схематично изображенного на рисунке, наибольшее перемещение поршня или его ход равен удвоенному радиусу кривошипа:

S = 2r

Следовательно, ход поршня — это расстояние между двумя крайними его положениями в цилиндре, занимаемыми им последовательно при каждом полуобороте вала двигателя (через каждые 180° поворота). Положение поршня, при котором он максимально удален от оси коленчатого вала, условно называется внутренней или верхней мертвой точкой (сокращенно в.м.т.), а положение, при котором поршень находится на минимальном расстоянии от оси вала, называется наружной или нижней мертвой точкой (н.м.т.).

Необходимо отметить, что мертвые точки присущи механизму и соответствуют таким двум положениям кривошипа (или колена), при которых шатун и кривошип вытянуты в одну линию, как это имеет место в рассматриваемом соосном механизме (ось цилиндра в котором пересекается с осью коленчатого вала). В общем случае мертвыми точками называют такие положения, при которых поршень меняет направление своего движения, и скорость его перемещения становится равной нулю.

Ход поршня S и диаметр цилиндра D относятся к главным оценочным параметрам двигателя, определяющим основные его размеры. В поршневых двигателях отношение хода поршня к диаметру цилиндра S/D изменяется примерно в пределах от 0,7 до 2,2. Если двигатель имеет S/D < 1,0, то его называют короткоходным. Современные автомобильные двигатели в основном, строятся короткоходными.

Объем, описываемый поршнем при его перемещении от в.м.т. до н.м.т., называется рабочим объемом цилиндра и обозначается Vh. Сумма рабочих объемов всех цилиндров в многоцилиндровых двигателях называется рабочим объемом, или литражом, двигателя так как рабочий объем чаще всего выражается в литрах.

Объем, образующийся в надпоршневой полости при положении поршня в в.м.т., называется объемом камеры сжатия или объемом камеры сгорания и обозначается Vr. Камеры сгорания двигателей часто имеют сложную геометрическую форму, поэтому действительный объем их определяют экспериментально.

Сумма рабочего объема цилиндра и объема его камеры сжатия называется полным объемом цилиндра. Полный объем цилиндра:

Va = Vh+Vc,

т. е. это объем, образующийся в надпоршневой полости цилиндра, когда поршень находится в н.м.т.

Степень сжатия — отношение полного объема цилиндра к объему камеры сжатия.

Эта величина показывает, во сколько раз уменьшается объем рабочего тела, находящегося в цилиндре при перемещении поршня от одного крайнего его положения к другому, т. е. из нижней мертвой точки в верхнюю мертвую точку. В зависимости от типа и назначения поршневых двигателей степень сжатия для них выбирают в пределах 5—22. Автомобильные двигатели строятся со степенями сжатия 7—9 и выше, если это не ограничивается свойствами топлива или другими факторами, оказывающими неблагоприятное влияние на работу данного типа двигателя. Принятая степень сжатия как оценочный параметр предопределяет экономичность и мощность данного двигателя.

Поделиться

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *