Отличия газодизельных ДВС от бензиновых, работающих на компримированном газе

В результате исследований по использованию природного газа в качестве топлива в дизелях установлено следующее:

  • природный газ (метан) в отличие от дизельного топлива обладает малым цетановым числом (10 ед.) и, следовательно, плохой воспламеняемостью;
  • осуществить воспламенение газа в дизеле со степенью сжатия менее 25 без постороннего источника зажигания смеси невозможно, так как температура воспламенения метана (680 °С) существенно выше температуры воспламенения дизельного топлива (280 °С);
  • для природного газа наиболее приемлемым процессом организации воспламенения рабочей смеси является газодизельный, при котором газовоздушная смесь воспламеняется от небольшой запальной дозы дизельного топлива, впрыскиваемого в камеру сгорания в конце такта сжатия;
  • газодизельный процесс является наиболее экономически оправданным, так как при этом не требуется переделка двигателя и его систем, а только дооборудование двигателя ГСП и перерегулировка топливной аппаратуры, которая выполняется автоматически с помощью электронных устройств;
  • при прекращении подачи газа газодизель может полноценно работать как обычный дизель. В отличие от бензиновых ГБА газодизельный процесс ДВС не только не ухудшает технико-экономические показатели работы автомобиля, но даже несколько увеличивает КПД двигателя (на 1 …2 %) по сравнению с дизельным циклом;
  • эксплутационный расход дизельного топлива при работе в газодизельном режиме снижается на 75…80 %.
ПО ТЕМЕ:  Преимущества и недостатки дизельных двигателей

Газовая система питания газодизельных и бензиновых двигателей внутреннего сгорания

Рис. Газовая система питания газодизельных и бензиновых двигателей внутреннего сгорания:1 — баллоны высокого давления; 2 — межбаллонные трубопроводы с компенсационными витками; 3 — манометр; 4 — расходный вентиль; 5 — межсекционная крестовина; 6 — наполнительный вентиль; 7 — магистральный вентиль; 8 — подогреватель газа; 9 — редуктор высокого давления; 10 — датчик падения давления газа в магистрали; 11 — предохранительный клапан; 12 — фильтр с электромагнитным клапаном; 13 — редуктор низкого давления; 14 — газовый смеситель; 15 — карбюратор-смеситель; 16 — трубка подачи газа системы холостою хода; 17— электромагнитный клапан пусковой системы; 18 — кнопочный переключатель; 19 — фильтр бензиновой системы питания с электромагнитным клапаном; 20 — дозатор газа; 21 — трехходовой электромагнитный клапан; 22 — смеситель газа; 23 — сопло Вентури; 24 — датчик блокировки; 25 — механизм установки запальной дозы; 26 — подвижный упор; 27 — телескопическая тяга; 28 — тяга регулятора ТНВД; 29 — датчик частоты вращения; 30 — зубчатый венец датчика; 31 — педаль акселератора

Конструкция газодизеля по сравнению с карбюраторной газобаллонной системой питания имеет некоторые отличия и дополнительно включает в себе следующие элементы: дозатор газа 20, трехходовой электромагнитный клапан 21, смеситель 22 с диффузором типа сопла Вентури 23, датчик блокировки 24, механизм установки запальной дозы 25, подвижный упор 26, телескопическую тягу 27 управления регулятора 28 ТНВД, индуктивный датчик 29 частоты вращения ДВС, зубчатый венец 30 коленчатого вала ДВС, рычаг-педаль 31 привода подачи топлива.

ПО ТЕМЕ:  Двигателя Москвич 402. Демонтаж, запуск, разборка

Газодизельный процесс осуществляется следующим образом. Газ после прохождения редуктора низкого давления 13 попадает в дозатор-смеситель, выполненный в виде самостоятельных блоков дозатора 20 и смесителя 22.

Дозатор газа, представляющий собой дроссельную заслонку, изготовлен в едином корпусе с диафрагменным механизмом ограничения подачи газа. Управление приводом дроссельной заслонки осуществляется с помощью педали 31 и соответствующей тяги из кабины водителя.

Управление работой диафрагменного механизма производится с помощью трехходового электропневматического клапана 21. Основное назначение дозатора — регулирование количества подаваемого в смеситель газа в зависимости от нагрузки двигателя и автоматическое уменьшение подачи газа при достижении двигателем максимальной частоты вращения коленчатого вала (2 550 мин»1). Система ограничения максимальной частоты вращения состоит из зубчатого венца 30, индуктивного датчика 29, электронного реле и трехходового электромагнитного клапана 21.

ПО ТЕМЕ:  5 причин почему роторные двигатели вымерли

Смеситель 22 представляет собой цилиндр со вставленным в него диффузором типа сопла Вентури 23. Внутри диффузор имеет кольцевой коллектор подвода газа с радиальными отверстиями, через которые газ смешивается с воздухом, образуя гомогенную смесь, поступающую в цилиндры двигателя. Таким образом, мощность двигателя в газодизельном режиме меняется только за счет изменения количества поступающего в цилиндры газа через смеситель при постоянной величине запальной дозы дизельного топлива, равной 12… 16 мм3. Напомним, номинальная цикловая подача топлива при работе по дизельному циклу составляет в пять раз большую величину — 79…81 мм3.

Механизм установки запальной дозы топлива 25 при переводе тумблера, расположенного в кабине автомобиля, в положение «Газ» включает питание электромагнита, который переводит подвижный упор 26 в положение, когда он препятствует дальнейшему перемещению рычага управления регулятора топливного насоса 25.

ПО ТЕМЕ:  Требования к безгаражным стоянкам с разогревом автомобилей горячим воздухом

Одновременно подвижный упор 26 при включении электромагнита отходит от концевого выключателя датчика 24 блокировки подачи газа и «неограниченной» доли дизельного топлива, обеспечивая тем самым включение питания электромагнитного клапана-фильтра 12 подачи газа. При выключении электропитания двигателя или в аварийных ситуациях, связанных, например, с выходом из строя электромагнита механизма установки запальной дозы 25, упор 26 вернется в первоначальное положение, включит датчик блокировки 24, который в свою очередь отключит цепь питания электромагнитного клапана 12 подачи газа. Аналогичные операции происходят при переводе двигателя из газодизельного в дизельный режим, когда тумблер в кабине водителя переводится в положение «Дизель».

Телескопическая тяга 27 служит для обеспечения перемещения педали 31 акселератора при включенном механизме ограничения хода рычага 28 управления регулятором ТНВД. В этом случае при нажатии на педаль 31 происходит сжатие пружины в телескопической тяге, и движение от педали передается на привод дроссельной заслонки дозатора 20 газа. В дизельном режиме телескопическая тяга работает как жесткий элемент, так как жесткость ее пружины значительно выше жесткости пружины рычага управления регулятора 28 ТНВД.

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (оцени первым)

Система охлаждения двигателя автомобиля

Во время сгорания топлива в камере сгорания температура газов достигает 780...880 градусов. Часть теплоты газов передается цилиндром головке цилиндров, поршням и другим деталям, которые вследствие этого сильно нагреваются. Такие детали необходимо охлаждать, в противном случае нарушается нормальная р...

Неисправности двигателя, их причины и способы устранения

В нормальных эксплуатационных условиях техническое состояние двигателя в течение продолжительного периода времени остается стабильным. Затем в результате естественного износа деталей эксплуатационные качества двигателя постепенно ухудшаются, и для их восстановления необходим ремонт. Различают два ви...

Процесс сгорания топлива в двигателе

При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприк...

Кривошипно-шатунный механизм (КШМ). Назначение, устройство, принцип действия

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Детали кривошипно-шатунного механизма можно разделить на: неподвижные - картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка голов...
✪Устройство автомобиля Авто⚡сайт №❶