Устройство и принцип действия электронной системы впрыска Мотроник

Производительность современных микропроцессоров позволяет осущест­влять управление функциями впрыска топлива и зажигания посредством еди­ного электронного блока управления, благодаря этому снижается стоимость аппара­туры и, кроме того, используется общий источник питания. Реализовать эту рациональную идею стало возможно, т.к. многие из входных сигналов при­годны для регулирования как впрыска, так и зажигания. Использование еди­ного электронного устройства повышает надежность системы управления двигателем и позволяет уменьшить затраты на сборку. На практике это означает отказ от механического и пневматического регулирования опережения зажигания. Вместо него используется бесконтактная, полностью электронная, управляемая микропроцессором система зажигания, которая функционирует на основе информации, поступающей от индукционного датчика частоты вращения и углового положения коленчатого вала. Микропроцессор элек­тронного блока управления преобразует поступающую информацию в так на­зываемые параметрические поверхности (трехмерные графические характери­стики), которые учитывают действия водителя и нагрузку на двигатель.

Для реализации возможно большего числа функций управления требу­ется разнообразная входная информация. Одна из разновидностей электронной системы управле­ния, представлена на рисунке:

Схема системы Мотроник с встроенной системой диагностики

Рис. Схема системы Мотроник с встроенной системой диагностики: 1 – адсорбер; 2 – клапан впуска воздуха; 3 – клапан регенерации продувки; 4 – регулятор давления топлива; 5 – форсунка; 6 – регулятор давления; 7 – катуш­ка-свеча зажигания; 8 – датчик фазы; 9 – вспомогательный воздушный насос для подачи дополнительных порций воздуха; 10 – вспомогательный воздушный клапан; 11 – расходомер воздуха; 12 – блок управления; 13 – датчик положения дроссель­ной заслонки; 14 – регулятор холостого хода; 15 – датчик температуры воздуха; 16 – клапан системы рециркуляции отработавших газов; 17 – топливный фильтр; 18 – датчик детонации; 19 – датчик частоты вращения коленчатого вала; 20 – дат­чик температуры охлаждающей жидкости; 21 – лямбда-зонд (кислородный дат­чик); 22 – аккумуляторная батарея; 23 – диагностический разъем; 24 – диагности­ческая лампочка; 25 – датчик дифференциального давления; 26 – электрический топливный насос в топливном баке

В систему впрыска Мотроник могут поступать следующие данные:

  • включено или выключено зажигание
  • положение распределительного вала
  • частота вращения коленчатого вала
  • скорость движения автомобиля
  • диапазон изменения передаточного отношения (в случае наличия ав­томатической трансмиссии)
  • номер включенной передачи
  • информация о включении кондиционера и т. п.
  • напряжение аккумуляторной батареи
  • температура воздуха на впуске
  • расход воздуха
  • угловое положение дроссельной заслонки
  • напряжение сигнала кислородного датчика
  • сигнал датчика детонации

Входные каскады электронного блока управления осуществляют подго­товку поступивших от датчиков сигналов, характеризующих режимные па­раметры, микропроцессор обрабатывает эти данные, определяет рабочий режим двигателя и производит расчет параметров необходимых управляю­щих сигналов, которые передаются на выходные каскады усиления, а затем поступают к исполнительным устройствам. Исполнительные устройства воздействуют на характеристики систем питания и зажигания, обеспечивая точное дозирование топлива и опти­мальный момент зажигания.

Датчиками системы Мотроник являются датчики, аналогичные описанным для системы впрыска L-Джетроник. Однако, ввиду отсутствия прерывателя-распределителя, для определения частоты вращения коленчатого вала здесь применяется индукционный датчик.

Индуктивный датчик частоты вращения

Рис. Индуктивный датчик частоты вращения:
1 – постоянный магнит; 2 – корпус; 3 – кар­тер двигателя; 4 — магнитомягкий сердеч­ник; 5 – обмотка; 6 – воздушный зазор; 6 — зубчатое колесо с точкой отсчета; 7 — магнитное поле; 8 – задатчик угловых импульсов (зубчатый диск) с отметчиком — пропуском зубьев

Индуктивный датчик содержат стержневой постоянный магнит 1 с по­люсным сердечником из магнитомягкой стали и обмотку индуктивности 5 с дву­мя выводами.

Датчик устанавливается непосредственно напротив ферромагнитного зубчатого диска — задатчика угловых импульсов 8, от которого его отделяет небольшой воздуш­ный зазор (0,8…1,5 мм). Сердечник соединен также с постоянным магнитом 1, и магнитное поле проходит через сердечник и зубчатый диск – задатчик импульсов 8. Интенсивность магнитного потока, проходя­щего через обмотку, зависит от того, нахо­дится ли датчик напротив зуба на диске или напротив промежутка (пропуска зубьев). Поскольку магнитный поток концентрируется зубьями диска, что приводит к увеличению магнитного потока через обмотку, то при подходе пропуска зубьев он ослабевает. Следовательно, при вращении зубчатого диска возникают колебания магнитного по­тока, которые, в свою очередь, генерируют синусоидальные колебания напряжения в электромагнитной обмотке, пропорциональ­ные скорости изменения магнитного потока. Амплитуда колебаний переменного напряжения увеличивается строго пропор­ционально увеличению скорости вращения зубчатого диска. Для генерирования достаточного уровня сиг­нала требуется, по крайней мере, 30 об/мин.

Переменное напряжение на выходе индукционного датчика

Рис. Переменное напряжение на выходе индукционного датчика:
1 – среднее напряжение; 2 – напряжение, соответствующее положению поршня в верхней мертвой точке

Количество зубьев на задатчике угловых импульсов зависит от конкретного приме­нения. Очень большой пропуск зубьев (8) устанавливается для определения поло­жения коленчатого вала и служит как отметка для синхронизации в ЭБУ. Ме­стоположение пропущенного зуба не обяза­тельно находится в ВМТ. Оно может быть сме­щено относительно ВМТ на любой угол, записанный в памяти блока управления.

Существует другой вариант задатчика угло­вых импульсов, который имеет один зуб на ци­линдр. Следовательно, в случае четырехцилиндрового двигателя задатчик имеет четыре зуба и, соответственно, генерируются четыре импульса на один оборот зубчатого диска.

В роли задатчика может выступать и маховик с равномерно установленными сталь­ными штифтами. Обычно они идут че­рез каждые 10°, т.е. устанавливается 36 штифтов.

Геометрия зубьев задатчика и магнитного сердечника должны соответствовать друг другу. Электронная схема в ЭБУ преобразу­ет синусоидальное напряжение, которое ха­рактеризуется четко меняющимися ампли­тудами, в среднеквадратичный сигнал с постоянной амплитудой для его оценки в микропроцессоре ЭБУ.

Современные системы обычно имеют один индуктивный датчик, но в некоторых ранних версиях уста­навливались два датчика: датчик частоты вра­щения и датчик положения коленчатого вала.

Амплитуда переменного напряжения дат­чика изменяется прямо пропорционально час­тоте вращения. Напряжение может изменяться от 5 В на холостом ходу до 100 В при частоте вращения 6000 об/мин. Поскольку для процес­сора предпочтителен цифровой сигнал (вклю­чено/выключено), переменное напряжение преобразуется в аналого-цифровом преобразо­вателе (АЦП).

Индуктивный датчик может также использоваться в каче­стве задающего генератора для выдачи базо­вого сигнала на зажигание и впрыск топлива.

В системах Мотроник предусмотрены также дополнительные функции системы впрыска. Необходимость в дополнительных функциях управления и регулиро­вания обусловлена жесткими требованиями, предъявляемыми к составу отработавших газов (ОГ), а также стремлением обеспечить наибольший комфорт и точное соответствие мощности двигателя условиям движе­ния. В настоящее время используются следующие дополнительные функции:

  • регулирование частоты вращения коленчатого вала на холостом ходу
  • регулирование топливоподачи с обратной связью по составу смеси
  • управление углом опережения зажигания по детонации
  • рециркуляция ОГ для снижения выброса с отработавшими газами оксидов азота (NOX)
  • управление турбокомпрессором
  • управление длиной впускных каналов
  • регулирование фаз газораспределения соответствующим воздействием на газораспределительный механизм
  • ограничение подачи топлива при достижении заданной частоты вра­щения коленчатого вала

Если система управления и регулирования наделена этими разнообразными функциями, речь идет уже не столько об управлении двигателем, сколько об управлении автомобилем в целом, ибо командные сигналы вмешиваются в функционирование и других узлов автомобиля. При этом ста­новится возможным реализовать связь управляющего устройства с автома­тической коробкой передач, что, в частности, способствует уменьшению ударных нагрузок при переключении передач, создавая благоприятный ре­жим эксплуатации. Оказывается возможным также регулирование крутя­щего момента на ведущих колесах. Кроме того, можно обеспечить и упра­вление функционированием регуляторов скорости автомобиля, которые в будущем станут весьма сложными устройствами, выполня­ющими при помощи радара автоматические функции управления движени­ем с целью максимального облегчения вождения.

Общим для любых систем впрыска с электронным управлением являет­ся наличие датчика положения дроссельной заслонки, который в простей­ших системах служит ос­новным источником информации о нагрузке двигателя. Вместе с тем боль­шое значение имеет датчик давления, пневматически соединенный с впу­скным трубопроводом и регистрирующий абсолютное давление в нем. Для определения нагрузки двигателя особенно важно измерение количест­ва проходящего через впускную систему воздуха. В системах впрыска Мотроник в зависимости марки и от модели автомобиля могут применять­ся следующие датчики расхода воздуха:

  • объемные расходомеры воздуха (LMM)
  • термоанемометрические массовые расходомеры воздуха с нагревае­мой нитью (LHM)
  • термоанемометрические массовые расходомеры воздуха с нагревае­мой пленкой (HFM)
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 голосов, средний: 5,00 из 5)
Автомат опережения впрыскивания Более раннее зажигание при увеличении частоты вращения коленчатого вала способствует увеличению мощности дизельного двигателя. При увеличении частоты вращения коленчатого вала впрыск начинается раньше, что обеспечивается автоматом (муфтой) опережения впрыскивания. Рис. Автомат опережения впрыск...
Распределённый многоточечный механический впрыск В настоящее время такие системы не выпускаются, но по дорогам нашей страны ещё долго будут колесить (если им помогут диагносты) автомобили АУДИ, МЕРСЕДЕС, ВОЛЬВО (БМВ и ПОРШЕ уже вымерли). Конечно система примитивная, но не забывайте, что начало выпуска подобных систем - 70-е годы. Наш автопром выпу...
✪Устройство автомобиля Авто⚡сайт №❶
Google+ ()