Метки: Система зажигания

Простой стробоскоп для установки зажигания своими руками

Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью выставлять оптимальный угол опережения зажигания (УОЗ) в автомобиле. Данный параметр играет важную роль в корректной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности, вследствие возросшего расхода топлива и перегрева двигателя. Несмотря на большой ассортимент промышленно выпускаемых приборов для проверки и установки УОЗ, актуальность создания стробоскопа своими руками не потеряла смысл и в наши дни. Представленная схема самодельного стробоскопа для автомобиля не требует наладки после сборки и изготавливается из доступных деталей. Принципиальная схема стробоскопа Схема разработана и представлена в журнале «Радио» в далеком 2000 году. Однако, благодаря своей простоте и надежности, остается актуальной и в наши дни. В принципиальной электрической схеме стробоскопа можно условно выделить 4 части: Цепь питания, состоящая из выключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для подачи и отключения питания используется выключатель SA1, для этого подойдет любой компактный выключатель или тумблер. Входная цепь, которая состоит из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закрепляется на высоковольтном проводе первого цилиндра. Элементы С1, R1, R2 представляют собой простейшую дифференцирующую цепь. Микросхема триггера, собранная по схеме двух однотипных одновибраторов, которые формируют на выходе импульсы заданной частоты. Частотозадающими элементами являются резисторы R3, R4 и конденсаторы С3, С4. Выходной каскад, собранный на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задаёт ток базы первого транзистора, а R9 – исключает сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды. Принцип работы Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы. Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3. Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А. Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от компании Cree с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно...

Система зажигания автомобиля. Устройство и работа

В систему зажигания, кроме источника тока и проводов низкого и высокого напряжения, входят следующие приборы: прерыватель, служащий для прерывания электрического тока в цепи низкого напряжения катушки зажигания; распределитель, служащий для распределения тока высокого напряжения по искровым зажигательным свечам цилиндров двигателя; катушка зажигания, которая преобразует док низкого напряжения в ток высокого напряжения; искровые зажигательные свечи, подводящие ток высокого напряжения в цилиндр двигателя и образующие электрическую искру; выключатель зажигания (замок зажигания), служащий для включения приборов системы зажигания при запуске двигателя и для отключения их при его остановке. Работает система зажигания следующим образом. Ток низкого напряжения от положительной клеммы аккумуляторной батареи 10 (или от положительной щетки генератора) поступает через контакт включателя 11 стартера, амперметр 9, выключатель зажигания 8, через добавочное сопротивление 7, первичную обмотку 6 катушки зажигания на подвижной контакт 3 прерывателя. При вращении кулачка 1 подвижной контакт то замыкается, то размыкается с неподвижным контактом 4. С этого контакта ток поступает на отрицательную клемму аккумуляторной батареи (или ка отрицательную щетку генератора). Когда ток движется по первичной обмотке катушки зажигания, вокруг -нее возникает магнитное поле. В момент размыкания контактов прерывателя магнитное поле первичной обмотки исчезает и его магнитные силовые линии пересекают витки вторичной обмотки катушки зажигания. При этом во вторичной обмотке возбуждается ток высокого напряжения, поступающий на ротор 13, помещенный под крышкой 42 распределителя, и далее к искровым зажигательным свечам 14. В цепи прерывателя параллельно его контактам присоединен конденсатор 15. Рис. Схема системы зажигания: 1 — кулачок; 2 — пружина; 3 — подвижной контакт прерывателя; 4 — неподвижный контакт прерывателя; 5 — катушка зажигания; 6 — первичная обмотка; 7 — добавочное сопротивление; 8 — выключатель зажигания; 9 — амперметр; 10 — аккумуляторная батарея, 11 — включатель стартера; 12 — крышка распределителя; 13 — ротор распределителя; 14 — искровая зажигательная свеча; 15 — конденсатор Конденсатор состоит из двух лент тонкой алюминиевой фольги, называемых обкладками, и изолировочных прокладок из парафинированной бумаги. Бумажные и алюминиевые ленты свернуты в рулон, который, после того как его пропитали парафином, устанавливается в металлический кожух. Отводной проdод одной обкладки соединен с кожухом и через нее с массой, а изолированный провод другой обкладки выводится наружу и присоединяется через клемму распределителя к первичной обмотке катушки зажигания. Конденсатор поглощает (накапливает) ток самоиндукции, возникающий в первичной обмотке катушки зажигания при размыкании контактов прерывателя, уменьшая искрение между контактами прерывателя и обгорание контактов. В момент полного размыкания контактов конденсатор разряжается, т.е. отдает поглощенный ток самоиндукции, который идет по первичной обмотке катушки зажигания в обратном направлении и вызывает очень быстрое исчезновение магнитного поля, вследствие чего напряжение тока во вторичной обмотке значительно повышается. Прерыватель и распределитель монтируются в одном приборе, называемом распределителем. Распределитель состоит из цилиндрического корпуса 18, внутри которого закреплена чашка 2 шарикоподшипника 1. На подшипнике установлен подвижной диск 3, на котором смонтирован прерыватель, состоящий из рычажка с подвижным контактом 9 и стойки 14 с неподвижным контактом 10. Контакты прерывателя изготовляются из тугоплавкого металла вольфрама. Стойка неподвижного контакта укреплена двумя винтами, один из которых имеет эксцентричную головку и служит для регулировки зазора между контактами в разомкнутом состоянии, а другой винт 12 служит для крепления стойки.. Величина этого зазора должна...

Общие сведения о потребителях тока на автомобиле

Общие сведения о потребителях тока на автомобиле

Потребителями электрического тока на автомобиле являются: система зажигания (в карбюраторном двигателе); стартер; приборы освещения; приборы световой и звуковой сигнализации; контрольно-измерительные приборы. Система зажигания карбюраторного двигателя служит для воспламенения рабочей смеси в цилиндре в конце такта сжатия. Смесь воспламеняется электрическим разрядом — искрой между электродами искровой зажигательной свечи. Так как сжатая рабочая смесь оказывает значительное сопротивление прохождению тока между электродами свечи, то для преодоления этого сопротивления система зажигания преобразует, ток низкого напряжения (12 в) аккумуляторной батареи в ток высокого напряжения (12 000 — 16 000 в). Стартер применяется при запуске двигателя для провертывания коленчатого вала с необходимой скоростью (60—80 об/мин). Приборы освещения предназначены для освещения дороги. Приборы световой и звуковой сигнализации служат для предупреждения пешеходов, водителей встречного и движущегося сзади транспорта о предстоящем повороте, торможении и о приближении автомобиля к препятствию. Контрольно-измерительные приборы помогают водителю контролировать работу. систем охлаждения и смазки двигателя, системы электрооборудования, пневматических тормозов и количество горючего в баках автомобиля. К потребителям тока относятся также электрические стеклоочистители, электродвигатели системы обогрева, а у дизеля — электрофакельный подогреватель.

Система зажигания ЗИЛ-130

Устройство контактно-транзисторной системы зажигания Зажигание батарейное, контактно-транзисторное. Схема включения приборов зажигания показана на первом рисунке, а принципиальная схема — на втором. В систему зажигания входят катушка зажигания Б114, распределитель Р4-Д, транзисторный коммутатор ТК102, добавочное двухсекционное сопротивление СЭ107, провода высокого напряжения, свечи, а также выключатель зажигания. Рис. Схема включения транзисторного зажигания: 1 — выключатель зажигания; 2 — добавочное сопротивление катушки зажигания; 3 — катушка зажигания; 4 — распределитель зажигания; 5 — стартер; 6 — коммутатор транзисторного зажигания; цифры 22—26 (включая цифры с буквенными обозначениями), написанные более мелко, указывают номера проводов схемы Рис. Принципиальная схема контактно-транзисторной системы зажигания: 1 — транзисторный коммутатор ТК102: 2 — катушка зажигания Б114; 3 — свечи зажигания; 4 — распределитель Р4-Д; 5 — добавочное сопротивление СЭ107; 6 — выключатель зажигания; 7 — аккумуляторная батарея; 8 — блок защиты транзистора; Т1 — германиевый транзистор; Тр — специальный трансформатор Катушка зажигания Б114 установлена под капотом на переднем щите кабины. Катушка имеет два выводных зажима обмотки первичной цепи. При установке катушки необходимо следить за правильностью присоединения проводов. К зажиму К надо подсоединить провода от одноименных выводов коммутатора и добавочного сопротивления, к выводу без маркировки — провод от коммутатора. Катушка зажигания Б114 предназначена для работы только с транзисторным коммутатором ТК102. Применение катушек зажигания других типов недопустимо. На хомуте катушки зажигания Б114 имеется надпись «Только для транзисторной системы» . Добавочное сопротивление СЭ107, состоящее из двух последовательно соединенных сопротивлений, установлено рядом с катушкой. При пуске двигателя стартером одно из сопротивлений последовательной цепи автоматически замыкается накоротко, чем достигается увеличение напряжения в момент пуска. Необходимо следить за правильностью подсоединений проводов к зажимам добавочного сопротивления: к зажиму ВК должен быть присоединен провод от стартера к зажиму ВК-Б — провод от выключателя зажигания к зажиму К — провод от вывода катушки зажигания Комбинированный выключатель зажигания и стартера ВК350 предназначен для включения и выключения цепей зажигания и стартера. Установлен он на переднем щите кабины. Выключатель имеет три положения, из которых два фиксированных. В положении О все выключено, ключ свободно вставляется в замок и вынимается из него. Положение I — включен зажим КЗ (зажигание) поворотом ключа по часовой стрелке. Положение II — включены зажимы КЗ (зажигание) и СТ (стартер) поворотом ключа по часовой стрелке. Положение II не фиксированное; возврат в положение I осуществляется пружиной после снятия усилия с ключа. Распределитель Р4-Д восьмиискровой, работает совместно с катушкой зажигания Б114, предназначен для прерывания тока низкого напряжения в первичной обмотке катушки зажигания и распределения тока высокого напряжения по свечам. Рис. Распределитель Р4-Д: 1 — валик; 2 — пластина; 3 — фильц; 4 — бегунок; 5 крышка; 6 — вывод высокого напряжения; 7 — пружина контактного уголька; 8 — контактный уголек; 9 — защелка крышки; 10 — центробежный регулятор; 11 — вакуумный регулятор; 12 — регулировочная гайка октан-корректора; 13 — регулировочный винт; 14 — рычажок; 15 — винт крепления прерывателя; 10 — фальц смазки кулачка; 17 — вывод низкого напряжения Особенностью контактно-транзисторной системы зажигания является отсутствие в распределителе шунтирующего конденсатора. На корпусе распределителя Р4-Д прикреплена фирменная табличка, на которой нанесена надпись «Только для транзисторной системы зажигания». Если по каким-либо причинам распределитель зажигания должен...

Влияние зажигания на состав отработавших газов

При работе двигателя происходит выделение воды (Н20) и диоксида углерода (С02), которые являются продуктами полного сгорания рабочей смеси. Но на практике полного сгорания рабочей смеси не происходит, поэтому в отработавших газах присутствуют также оксиды углерода (СО), оксиды азота (NOx), углеводороды (НС), сажа и тому подобные вредные для дыхания примеси. Количество токсичных примесей в отработавших газах во всех странах ограничивается законодательным образом. Для уменьшения содержания токсичных примесей используют топливо высокого качества, системы его впрыска для более точного дозирования подачи топлива в камеру сгорания, а также каталитические нейтрализаторы в системе выпуска. Кроме того, с той же целью совершенствуется непосредственный процесс сгорания рабочей смеси в цилинжрах двигателя. В частности, на бензиновых двигателях можно оптимально выбрать угол опережения (момент) зажигания и достаточно длинный промежуток искрового разряда. Рис. Влияние продолжительности искрового разряда на содержание углеводородов в отработавших газах (одноцилиндровый двигатель, n = 3900 мин’) На рисунке можно увидеть, что — независимо от коэффициента избытка воздуха — большая продолжительность искрового разряда приводит к снижению содержания углеводородов в отработавших газах. При этом индуктивная система зажигания имеет преимущество по сравнению с системой зажигания с высоковольтным конденсатором. Рис. Влияние момента зажигания на содержание углеводородов и оксидов азота в отработавших газах (четырехцилиндровый двигатель, n = 3000 мин’) Из рисунка видно, что «поздний» момент зажигания снижает содержание углеводородов и оксидов азота в отработавших газах. Кроме того, необходимо учитывать, что слишком «позднее» зажигание вновь приведет к увеличению содержания углеводородов в отработавших газах. Образование угарного газа (СО) лишь незначительно зависит от выбора момента зажигания.

Момент зажигания

Момент зажигания — это момент образования искры между электродами свечи зажигания. Величина момента зажигания определяется в градусах угла поворота кривошипа (шатунной шейки) коленчатого вала по отношению к верхней мертвой точке поршня. Эта величина именуется угол опережения зажигания — угол поворота кривошипа от момента, при котором на свече зажигания происходит искрообразование, до занятия поршнем верхней мертвой точки. Величина угла опережения зажигания зависит от режима работы двигателя, который, с учетом задержки воспламенения рабочей смеси, должен обеспечивать оптимальное изменение давления в цилиндре во время сгорания смеси. Следовательно, момент зажигания должен быть выбран так, чтобы основной процесс сгорания и, соответственно, пик давления в цилиндре, происходили вскоре после прохождения поршнем верхней мертвой точки. Соответственно, воспламенение сжатой рабочей смеси в цилиндре осуществляется непосредственно перед верхней мертвой точкой поршня. При максимально возможном крутящем моменте и незначительном содержании вредных примесей в отработавших газах необходимо обеспечить минимальный расход топлива. При этом не должно происходить детонационное сгорание. Рис. Распределитель зажигания производства фирмы «Bosch» В индуктивной (контактной) системе зажигания регулировка угла опережения зажигания осуществляется механически в распределителе зажигания. Так как при увеличении частоты вращения коленчатого вала увеличивается задержка воспламенения рабочей смеси, угол опережения зажигания настраивается как «ранний» с помощью центробежного регулятора. Это необходимо, так как при одинаковом составе горючей смеси задержка воспламенения остается постоянной, и вследствие этого, при росте частоты вращения всегда необходим более «ранний» момент зажигания. В двигателях с непосредственным впрыском бензина и послойным образованием рабочей смеси диапазон изменений момента зажигания посредством окончания впрыскивания и времени, необходимого для подготовки смеси, сильно ограничен. Одновременно время задержки воспламенения увеличивается, если смесь в районе свечи зажигания является бедной. Для решения подобной проблемы иногда используют установку второй свечи зажигания в камере сгорания. Кроме того, необходимо соблюдать оптимальный температурный режим работы свечи зажигания, что достигается точной регулировкой зазора между центральным и боковым электродами свечи. В прерывателе-распределителе контактной системы зажигания, кроме регулировки угла опережения зажигания с помощью центробежного регулятора, то есть в зависимости от частоты вращения коленчатого вала, необходимо обеспечить аналогичную регулировку в зависимости от нагрузки на двигатель. Для этого в распределитель встроен вакуумный регулятор угла опережения зажигания (вакуумный корректор), соединенный с впускным коллектором и реагирующий на изменение разрежения воздуха, то есть на изменение нагрузки. В диапазоне частичных нагрузок воспламенение рабочей смеси должно происходить раньше, чем при полной нагрузке с богатой горючей смесью. В режиме холостого хода и при движении накатом, как правило, происходит увеличение задержки воспламенения рабочей смеси. Графическое изображение изменения угла опережения зажигания представлено на рисунке. Рис. Изменение момента зажигания в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель, кривые изменения угла опережения зажигания При использовании системы электронного зажигания возможен более гибкий выбор момента зажигания. При этом обеспечивается лучшая регулировка режимов работы двигателя. Подбор данных для такой регулировки, которая может состоять более чем из 4000 отдельных значений, происходит с помощью испытаний двигателя в различных режимах работы с изменениями параметров (частота вращения коленчатого вала, угол опережения зажигания и др.). Рис. Диаграмма зависимости угла опережения зажигания от частоты вращения коленчатого вала и расхода воздуха (разработка фирмы «Bosch») При испытаниях меняется также нагрузка на двигатель, под которой в данном случае понимается отношение фактического расхода воздуха...

Свечи зажигания. Назначение и устройство

Свеча зажигания служит для переноса в цилиндр двигателя подающегося высокого напряжения, с целью создания искры зажигания и воспламенения рабочей смеси. Кроме того, свеча должна изолировать от блока цилиндров подающееся на нее высокое напряжение (более 30 кВ), снижать пробои и прорывы, а также герметично закрывать камеру сгорания. Кроме того, она должна обеспечивать соответствующий диапазон температур во избежание загрязнения электродов и возникновения калильного зажигания. Устройство типичной свечи зажигания показано на рисунке. Рис. Свеча зажигания производства фирмы «Bosch» Стержень клеммы и центральный электрод Стержень клеммы изготовлен из стали и выступает из корпуса свечи зажигания. Он служит для присоединения провода высокого напряжения или напрямую установленной стержневой катушки зажигания. Электрическое соединение между стержнем клеммы и центральным электродом выполнено с помощью расположенного между ними расплава стекла. К расплаву стекла домешивается наполнитель для улучшения степени обгорания и свойств сопротивления помехам. Так как центральный электрод находится непосредственно в камере сгорания, он подвержен воздействию очень высоких температур и сильной коррозии вследствие контакта с отработавшими газами, а также с остаточными продуктами сгорания масла, топлива и примесей. Высокие температуры искрообразования приводят к частичному расплавлению и выпариванию материала электродов, поэтому центральные электроды изготавливаются из никелевого сплава с добавками хрома, марганца и кремния. Наряду с никелевыми сплавами используются также сплавы серебра и платины, так как они незначительно обгорают и хорошо отводят тепло. Центральный электрод и стержень клеммы герметично закреплены в изоляторе. Изолятор Изолятор предназначен для отделения стержня клеммы и центрального электрода свечи зажигания от ее корпуса, чтобы не происходило пробоя высокого напряжения на «массу» автомобиля. Для этого изолятор должен обладать высоким электрическим сопротивления, поэтому он изготовлен из оксида алюминия, содержащего стекловидные добавки. Для снижения токов утечки горлышко изолятора имеет оребрение. Наряду с механическими и электрическими нагрузками изолятор подвергается также высоким термическим нагрузкам. При работе двигателя на максимальных оборотах у опоры изолятора температура достигает 850 °С, а у головки изолятора — около 200 °С. Данные температуры возникают вследствие цикличных процессов сгорания рабочей смеси в цилиндре двигателя. Для того, чтобы температуры в области опоры не становились высокими, материал изолятора должен обладать хорошей теплопроводностью. Общее устройство свечи зажигания Свеча зажигания имеет металлический корпус, который вкручивается в соответствующее отверстие в головке блока цилиндров. В корпус свечи зажигания встроен изолятор, для герметизации которого используются специальные внутренние уплотнения. Изолятор содержит внутри центральный электрод и стержень клеммы. После сборки свечи зажигания выполняется окончательная фиксация всех деталей путем термической обработки. Боковой электрод, изготовленный из того же материала что и центральный, приваривается к корпусу свечи. Форма и расположение бокового электрода зависят от типа и конструкции двигателя. Зазор между центральным и боковым электродами регулируется в зависимости от типа двигателя и системы зажигания. Существует много возможностей расположения бокового электрода, что влияет на величину промежутка искрового разряда. Чистая искра образуется между центральным электродом и боковым, г-образной формы. При этом рабочая смесь легко попадает в промежуток между электродами, что способствует ее оптимальному воспламенению. Если кольцеобразный боковой электрод устанавливается на одном уровне с центральным, то искра может скользить над изолятором. В этом случае ее называют скользящим искровым разрядом, который позволяет сжигать наслоения и остаточный нагар на изоляторе. Улучшить эффективность воспламенения рабочей смеси можно либо увеличением длительности искрообразования,...

Высоковольтная конденсаторная система зажигания

В качестве альтернативы транзисторной индуктивной системе зажигания разрабатываются плазменные и лазерные системы зажигания, но вследствие высоких затрат на изготовление они пока не используются. Преимуществом лазерной системы зажигания является, в частности, гибкий выбор точки воспламенения рабочей смеси в камере сгорания, что осуществляется посредством фокусировки лазерного луча. Особое преимущество данная система представляет для бензиновых двигателей, в которых начало сгорания рабочей смеси инициируется в струе впрыскиваемого топлива. При этом задержка воспламенения незначительна, в результате повышается коэффициент полезного действия двигателя и снижается уровень вредных примесей в отработавших газах. При использовании в спортивных соревнованиях высокофорсированных двигателей приходится сталкиваться с сильным загрязнением маслом и нагаром основания изоляторов свечей зажигания. В этом случае часто используют высоковольтную конденсаторную систему зажигания, схематическое устройство которой представлено на рисунке. Рис. Высоковольтная конденсаторная система зажигания Здесь функцию аккумулятора энергии выполняет конденсатор, который разряжается через первичную обмотку, при этом во вторичной обмотке индуцируется высокое напряжение. Трансформатор высокого напряжения работает быстро и с малыми потерями. По сравнению с транзисторной индуктивной системой зажигания здесь повышение вторичного напряжения на порядок выше, около 3000 В/мкс — против 400 В/мкс. Вследствие значительно более быстрого повышения вторичного напряжения потери энергии на свече зажигания, которые могут возникнуть вследствие вышеупомянутых загрязнений, остаются незначительными. Малая длительность индуктивной фазы искрового разряда, напротив, отрицательно влияет на воспламенение рабочей смеси с помощью высоковольтного конденсатора, в особенности, при неоднородной смеси; это может привести к перебоям в зажигании. Для решения данной проблемы можно использовать систему зажигания с переменным напряжением. В этом случае длительность искрового разряда увеличивается, при этом образуется колебательный контур из конденсатора и трансформатора высокого напряжения. После образования длительность искрового разряда поддерживается с помощью энергии, сохраненной во вторичной обмотке катушки зажигания, в то время как конденсатор вновь заряжается. Рис. Длительность индуктивной фазы искрового разряда tF в высоковольтной конденсаторной (слева) и индуктивной (справа) системах зажигания Спад напряжения во вторичной цепи высоковольтной конденсаторной системы зажигания с увеличением частоты вращения коленчатого вала в любом случае меньше, чем в индуктивной системе зажигания. Можно подвести следующие итоги: Индуктивная система зажигания используется только в старых двигателях. Она была полностью вытеснена транзисторной индуктивной системой зажигания. Зажигание с помощью высоковольтного конденсатора используется только в особых случаях, например, когда следует опасаться перебоев искрообразования вследствие сильного загрязнения свечей зажигания. Полностью электронная транзисторная индуктивная система зажигания не требует обслуживания; момент искрообразования сохраняется без последующей регулировки. Полностью электронная транзисторная индуктивная система зажигания предоставляет возможность регулировки угла замкнутого состояния контактов, при котором напряжение во вторичной цепи системы зажигания остается всегда высоким независимо от частоты вращения коленчатого вала. При этом вырабатывается достаточно энергии, необходимой для воспламенения рабочей смеси. Вследствие этого даже бедные смеси бензина и воздуха хорошо воспламеняются.

Транзисторная индуктивная система зажигания

Недостатком традиционной индуктивной системы зажигания является само наличие контактов прерывателя и зависимость силы тока высоковольтной катушки от частоты вращения коленчатого вала и, соответственно, вала привода прерывателя-распределителя. Эта зависимость точно определяется геометрическими параметрами кулачка распределителя. Рис. Контактно-транзисторная индуктивная система зажигания Улучшить ситуацию можно путем использования транзистора для прерывания тока в первичной цепи. При этом не допускается нежелательное искрообразование, а сила тока в первичной цепи может повышаться, что при одновременном снижении числа витков первичной обмотки способствует быстрому созданию магнитного поля. Как следствие спад напряжения во вторичной цепи системы зажигания при растущей частоте вращения становится незначительным. Рис. Изменение по времени силы тока в первичной обмотке высоковольтной катушки индуктивной (черный график) и транзисторно-индуктивной (красный график) систем зажигания Включение транзистора происходит посредством тока управления. Когда ток управления подается на транзистор, тот открыт для тока первичной цепи. Если ток управления прерывается, прерывается и ток первичной цепи. Управление током первичной цепи осуществляется первоначально посредством уже известных контактов прерывателя, что также используется в индуктивной системе зажигания. Так как сила тока управления значительно меньше, чем сила тока первичной цепи, все указанные недостатки в данном случае становятся незначительными. Такая конструкция называется контактно-транзисторной индуктивной системой зажигания. В современных системах зажигания ток управления генерируется с помощью датчика импульсов. В этом случае речь идет о бесконтактной транзисторной индуктивной системе зажигания. Так как здесь нет механических контактов, нет и необходимости проводить техническое обслуживание. Кроме того, в данной системе момент зажигания будет точно обеспечиваться электроникой. В качестве электрического датчика импульсов используется индукционный датчик или датчик Холла. Индукционный датчик состоит из постоянного магнита и стального ротора. Рис. Индукционный датчик: 1 — постоянный магнит; 2 — сердечник из магнитомягкой стали с индукционной обмоткой; 3 — изменяемый воздушный зазор; 4 — ротор; 5 — зубцы ротора Ротор установлен на валу распределителя зажигания. При вращении изменяется зазор между сердечниками из магнитомягкой стали и зубцами ротора, что приводит к изменениям магнитного потока, идущего через индукционную обмотку. В индукционной обмотке индуцируется переменное напряжение, которое после преобразования в других устройствах служит для управления транзистором. Индукционный датчик может устанавливаться непосредственно на коленчатый вал или рядом с зубчатым венцом маховика; в последнем случае сигнал датчика должен преобразовываться в отвечающий числу цилиндров периодический ток управления при помощи соответствующего электронного устройства. Преимуществом данного типа установки является точное по времени возбуждение напряжения во вторичной цепи системы зажигания, так как исключены производственные допуски и износ привода распределителя зажигания. В датчике Холла используется эффект Холла, названный в честь его первооткрывателя: если ток течет в электрическом проводнике, который пронизывается магнитным полем, электроны отклоняются вертикально в направлении тока и магнитного поля. Особенно четко можно увидеть эффект Холла в полупроводнике. Рис. Датчик Холла: Обтюратор Магнитомягкая электропроводящая деталь Слой Холла Воздушный зазор U — Напряжение Холла На рисунке в слое Холла вверху царит избыток электронов, а внизу — недостаток электронов. Благодаря этому на датчике Холла снимается напряжение. Если магнитное поле, например, прерывается обтюратором, напряжение Холла ослабевает. Периодическая смена напряженности магнитного поля, вызванная вращающимся обтюратором, может использоваться для определения частоты вращения. Часто на двигатель устанавливается дифференциальный датчик Холла. В этом случае вследствие изменения профиля боковой поверхности магнитного зубчатого диска импульсного датчика вырабатываются два сигнала, которые дифференцировано усиливаются и становятся более чувствительными к...

Индуктивная (контактная) система зажигания

В индуктивной (контактной) системе зажигания для выработки высокого напряжения, необходимого для искрообразования, используется высоковольтная катушка (бобина), у которой первичная обмотка состоит из нескольких витков толстой проволоки, а вторичная обмотка — из большого количества витков тонкой проволоки. Индуктивные напряжения на обеих обмотках зависят от числа витков, поэтому при относительно низком напряжении в первичной обмотке на вторичной обмотке возникает очень высокое напряжение, необходимое для эффективного искрообразования. Наряду с высоковольтной катушкой для индуктивной системы зажигания необходимыми составляющими являются аккумуляторная батарея, выключатель зажигания, прерыватель, распределитель, конденсатор и свечи зажигания по числу цилиндров двигателя. В особых случаях используется по две свечи зажигания на цилиндр. Рис. Индуктивная (контактная) система зажигания Для образования искры на свече зажигания необходимо, чтобы электрический ток в нужный момент прерывался в первичной обмотке катушки зажигания. В этом случае магнитное поле первичной обмотки разрушается и индуцируется соответствующее высокое напряжение во вторичной обмотке. Для прерывания электрического тока служит прерыватель. Его контакты удерживаются в замкнутом состоянии до наступления момента зажигания рабочей смеси в очередном цилиндре. В этот момент вращающийся кулачок размыкает контакты прерывателя. В тот же момент ротор распределителя зажигания должен замкнуть в распределителе контакты между вторичной обмоткой высоковольтной катушки и свечой зажигания соответствующего цилиндра. Для обеспечения согласованной работы прерывателя и распределителя их обычно объединяют в единый агрегат — прерыватель-распределитель, на корпусе которого крепится и конденсатор. Наличие контактов прерывателя привело к тому, что такую систему часто называют контактной системой зажигания. Индуктивное напряжение в первичной цепи системы зажигания составляет около 350 В, а напряжение во вторичной цепи, получаемое в результате, достигает примерно 25 кВ при соотношении чисел витков обмоток, равном 70. Часто поэтому первичную цепь называют цепью низкого напряжения, а вторичную — цепью высокого напряжения. Длительность замкнутого состояния контактов прерывателя выражается в градусах и называется угол замкнутого состояния контактов. Величина этого угла зависит от геометрических параметров кулачка и отрегулированного зазора в контактах прерывателя. Более того, угол замкнутого состояния контактов уменьшается при увеличивающейся частоте вращения коленчатого вала, так как частота вращения распределительного вала также увеличивается, а прерыватель-распределитель приводится в действие именно от распределительного вала двигателя. Так как увеличение силы тока в первичной обмотке происходит не внезапно, а стремится асимптотически к своему максимальному значению, конечное значение силы тока первичной цепи уменьшается при уменьшении угла замкнутого состояния контактов, а магнитное поле катушки зажигания к моменту размыкания контактов прерывателя слабеет. Рис. Изменение по времени силы тока в первичной цепи Вследствие ослабления магнитного поля снижается напряжение во вторичной цепи системы зажигания. Принципиальное изменение напряжения во вторичной цепи в зависимости от частоты вращения коленчатого вала показано на рисунке. Рис. Напряжение во вторичной цепи системы зажигания При низкой частоте вращения во время размыкания контактов прерывателя может возникнуть паразитная искра, которая задерживает разрушение магнитного поля в катушке зажигания, что приводит к снижению напряжения во вторичном контуре. Обычно паразитная искра при размыкании контактов подавляется с помощью конденсатора. Как следствие, происходит быстрое разрушение магнитного поля с соответствующим высоким напряжением во вторичной цепи системы зажигания. Даже при высокой частоте вращения коленчатого вала можно наблюдать дополнительное падение напряжения, вызванное вибрацией контактов прерывателя. Максимальная частота искрообразования ограничивается величиной приблизительно 1800 искр/мин.

Системы зажигания для принудительного воспламенения рабочей смеси

Системы зажигания для принудительного воспламенения рабочей смеси

С момента своего появления системы зажигания для принудительного воспламенения рабочей смеси делятся на две группы: системы батарейного зажигания системы зажигания от магнето Системы зажигания от магнето применяются на сегодняшний день только в небольших и экономичных двигателях, чаще всего стационарных. Искрообразование, необходимое для воспламенения рабочей смеси, происходит благодаря энергии магнето — компактного генератора переменного тока с механическим приводом. Обычно системы зажигания от магнето используются на двигателях, в системе электрооборудования которых для снижения веса отсутствует аккумуляторная батарея, а пуск двигателя осуществляется с помощью механического привода. Системы батарейного зажигания, в соответствии с названием, работают в сочетании с электрооборудованием, включающем в себя аккумуляторную батарею. Такие системы способны обеспечивать искрообразование на любых режимах работы двигателя, а наличие аккумулятора позволяет осуществлять пуск двигателя от электростартера. Долгое время бензиновые двигатели легковых автомобилей и мотоциклов оснащались индуктивной (контактной) системой зажигания от высоковольтной катушки (бобины), но в середине 70-х годов прошлого века развитие систем электрооборудования автомобиля способствовало постепенной замене механических деталей индуктивной системы зажигания на электронные. Так появились транзисторная индуктивная система зажигания и высоковольтная конденсаторная система зажигания. Эти совершенные электронные системы неимеют движущихся деталей, подверженных механическому износу, и, как следствие, не требуется частое техническое обслуживание и регулировка системы зажигания. Электронные системы зажигания конструируются таким образом, чтобы вторичное напряжение в системе лишь незначительно возрастало при увеличении частоты вращения коленчатого вала и вырабатывалось достаточно энергии, необходимой для воспламенения рабочей смеси. С помощью управления характеристиками двигатель может работать с полной нагрузкой во всем диапазоне частоты вращения коленчатого вала при обеспечении оптимальных моментов искрообразования.

Задержка воспламенения рабочей смеси

В дизельном двигателе продолжительность задержки воспламенения означает период между началом впрыскивания и воспламенением. Задержка воспламенения увеличивается экспоненциально вместе с растущей температурой заряда смеси и может компенсироваться до определенной степени только переносом момента впрыскивания топлива на более ранний срок при холодном двигателе. В бензиновом двигателе между образованием искры зажигания и экзотермическим сгоранием смеси также существует отрезок времени, который называется задержкой воспламенения. Рис. Задержка воспламенения рабочей смеси в дизельном двигателе Начало сгорания смеси в дизельном двигателе можно определить по резкому нарастанию давления, которое значительно отличается от характера изменения давления без сгорания. Длительность задержки воспламенения составляет около 1/1000 с. Во время задержки воспламенения топливо распространяется в воздухе, сжатом с камере сгорания. Оно испаряется, и происходят предварительные химические реакции. Задержка воспламенения зависит, кроме всего прочего, от температуры. В частности, важны следующие условия: тип топлива: дизельное топливо состоит из крупномолекулярных углеводородных соединений, которые быстро распадаются и приводят к небольшой задержке воспламенения. Бензин, особенно высокооктановый, состоит из углеводородных соединений, обеспечивающих большую задержку воспламенения; с температура и давление: при увеличении температуры и возрастании давления задержка воспламенения уменьшается. В дизельном двигателе предпочтительной является короткая задержка воспламенения, для того, чтобы поступающее дизельное топливо начало гореть с момента начала впрыскивания. При этом влияние на характер изменения давления сгорания оказывается путем дозирования впрыскивания топлива. Большая задержка воспламенения приведет к резкому, взрывному сгоранию поступающего топлива. В этом случае наблюдается резкое нарастание давления с соответствующим повышением уровня шума работы двигателя. В бензиновом двигателе, наоборот, предпочтительной является большая задержка воспламенения, чтобы избежать преждевременного неравномерного сгорания смеси.

✪Устройство автомобиля Авто⚡сайт №❶