Метки: Углепластик

Углепластик (карбон) в авто – поиск альтернатив

Углепластик (карбон) в авто – поиск альтернатив

Уникальный композитный материал — углепластик пока используется в основном в спортивном автомобилестроении для суперкаров и болидов, потому что массовое использование сдерживается высокой ценой и эксплуатационными характеристиками карбона. Основным материалом для изготовления корпусов автомобилей остается тонколистовая сталь. В последнее десятилетие все активнее используются альтернативные материалы, а именно — инженерные армированные пластики с особыми свойствами и алюминий. Они легко формуются, окрашиваются, ремонтируются, то есть технологичны. При упоминании слова «карбон», сразу же представляются эксклюзивные капоты, ведь это одна из самых заметных и распространенных автомобильных деталей. Но оклейка карбоном авто обычно ограничивается спойлерами, бамперами, обвесами и отделкой зеркал. Для внутреннего тюнинга карбон применяют для ручек переключателя коробки передач, декора панели или вставки на руле. Почему отделка авто карбоном популярна Углепластик, он же карбон: очень эстетичен, прочен и применяется чаще как укрепляющее дополнение к традиционным материалам, роскошный внешний вид при отделке авто добавляет ему эксклюзивности, поэтому пленки карбон пользуются стабильным спросом, отлично противостоит скручивающим нагрузкам и не подвержен коррозии, использование карбона снижает массу авто и повышает топливную эффективность, ведь он вполовину легкче стали и на 20% легче алюминия. Основными составляющими этого композитного материала являются углеродные волокна и полимерные смолы. Перерабатывается он формованием и дорогостоящим, трудоемким является именно процесс получения углеродного волокна с особыми свойствами. Почему не делают массовые автомобили из углепластика Эксперты  выделают 5 основных параметров, ограничивающих широкое использование углеплластика, кроме его высокой цены: Этот дорогой материал тяжело ремонтировать при повреждении. Его нельзя заварить, отрихтовать, наплавить. И поврежденную деталь из карбона приходится просто менять. Карбон плохо противостоит точечным ударам, его поверхность легко царапается и желтеет под воздействием солнечных лучей. В технологичности он проигрывает стали и инженерным пластикам. Опасность представляют микротрещины, снижающие прочность. И еще не стоит забывать об экологической составляющей. Процессы утилизации автомобилей во всем мире уже отлажены, а вот композитные материалы практически не перерабатываются вторично. И повторно их использовать нельзя, что делает углепластик еще дороже. Для того чтобы изделие из карбона служило долго, сохраняя свою эстетику, необходим точный расчет многих параметров и правильный выбор материалов — углеполотна и эпоксидной смолы. Возможность применения его в серийном автомобилестроении очень спорна. Разве что для тюнинга, но не при изготовлении несущих элементов. Обтянутое карбоном авто смотрится роскошно. Но очень может быть, что этот суперсовременный материал так и не попадет в массовое производство, ведь альтернативные инженерные пластики с армированием не такие капризные и дорогостоящие. Углепластик будут продолжать использовать для суперкаров и гоночных автомобилей, благодаря его уникальным качествам. Тем не менее, пройдет еще немало лет, пока мы увидим его использование на серийных автомобилях. В то же время, технологии не стоят на месте, и возможно, скоро углепластик будет выглядеть как архаизм, так и не попадя в массовое производство. Использование карбона в конструкции машины существенно увеличивает ее стоимость. Почему его стоимость так высока, мы уже разбирались тут. А пока производители материалов для тюнинга авто предлагают доступные альтернативы: это специальная виниловая пленка «под карбон», которая плотно обтягивает любую деталь, термоусаживается под воздействием теплого воздуха, аквапечать с помощью пленки всех цветов и с любым рисунком под напором воды, аэрография, которая требует высоких художественных навыков мастера, зато рисунок получается эксклюзивным. Как снизить стоимость карбона Основной путь — снижение себестоимости получения углеволокна за счет максимальной автоматизации процессов и снижения их продолжительности. Поэтому идут поиски материала для получения углеволокна из...

Виды полотна углепластика (карбона)

Полотно определяет не только внешний вид получившегося карбона, но и его прочностные и технологические характеристики. От плетения и плотности углеполотна зависит и то, как легко и качественно можно выложить полотно в форме при заливке смолой. Виды плетений полотна Полотно (Plane Weave, P) — самый плотный и прочный вид плетения, самый распространенный. Нити утка и основы переплетаются поочередно. Елочка (Twill, T) — саржевое плетение, наиболее универсальное полотно. Нити утка и основы переплетаются через две нити. Еще одна разновидность елочки Сатин (Satin WEAVE, R) — наименее плотное и самое пластичное полотно. Рыхлость полотну придают особенности плетения: каждая нить утка и основы проходит на несколькими нитями утка или основы. Реже используется корзинное плетение — Leno, Basket Weave. Схематически виды плетения карбонового полотна представлены на рисунке. Правила выбора углеполотна Выбор текстиля определяется назначением, способом использования углеволокна и способом получения углепластика. Его основными характеристиками являются: Плотность, масса на единицу площади г/м.кв, Линейная плотность, количество нитей на 1 см2 в каждом направлении, Число К, количество тысяч элементарных нитей углерода (цепочек) в одной нити. Наиболее распространено волокно с К3. Обычно К=6-12-24-48. Для автотюнинга чаще всего используются полотна плотностью 150-600 г/м.куб с толщиной волокон 1-12К. А для велосипедных рам К3. Технические характеристики волокон карбона Для углеродных волокон основными механическими характеристиками являются предел прочности на растяжение σв и предел прочности на единицу объема, а также модуль упругости, определяющий эластичность и способность работать на изгиб. Механические свойства сильно зависят от ориентации волокон, то есть они анизотропны. Технические характеристики, как правило, приводятся для продольного направления. Углеродные волокна обладают следующими механическими характеристиками по сравнению с армирующими металлическими, стекловолокном и полимерными волокнами. Волокно (проволока) ρ, кг/ м³ Тпл, °C σB, МПа σB/ρ, МПа/кг*м-3 Алюминий 2 687 660 620 2 300 Асбест 2 493 1 521 1 380 5 500 Бериллий 1 856 1 284 1 310 7 100 Карбид бериллия 2 438 2 093 1 030 4 200 Углерод 1 413 3 700 2 760 157 Стекло E 2 548 1 316 3 450 136 Стекло S 2 493 1 650 4 820 194 Графит 1 496 3 650 2 760 184 Молибден 0 166 2 610 1 380 14 Полиамид 1 136 249 827 73 Полиэфир 1 385 248 689 49 Сталь 7 811 1 621 4 130 53 Титан 4 709 1 668 1 930 41 Вольфрам 19 252 3 410 4 270 22 Например, параметры углеродных волокон Toray из полиакрилата (PAN) c высокой прочностью на растяжение High Modulus Carbon Fiber. Волокно (fiber) Модуль упругости (msi) Предел прочности (ksi) M35J 50 683 M40J 57 398 M40J 55 640 M46J 63 611 M50J 69 597 M55J 78 583 M60J 85 569 Существует взаимосвязь — чем выше предел прочности, тем ниже модуль упругости. Что определяет технические характеристики карбоновых композитов При подборе материала очень важно найти оптимальный баланс между этими характеристиками, подбирая слои, направление волокна, метод плетения и плотность. Механические свойства композитов определяются следующими параметрами: Тип карбонового волокна и смолы, Тип плетения, ориентация волокон, Соотношение волокон (объем волокна) и смолы в композиции, Плотность, однородность, пористость и пр.

Карбон своими руками. Выбор эпоксидной смолы и компаунда

Основными материалами для изготовления карбона являются эпоксидные компаунды и углеродное полотно. Технология производства карбоновых изделий основана на технологических особенностях полиэфирных и эпоксидных смол, которые еще ошибочно называют компаундами. Компаундами правильнее назвать смесь смолы с отвердителем и наполнителем, потому что «компаундирование» — это смешивание. Такие смеси — компаунды бывают холодного отверждения и горячего, что определяется видом отвердителя. Суть процесса отверждения заключается в преобразовании молекулы смолы с реакционноспособными эпоксидными группами (= С — С =) в макромолекулу при реакции с аминами, ангидридами органических кислот, фенолформальдегидными смолами, содержащимися в отвердителях. При введении отвердителей эпоксидные смолы переходят из жидко-вязкого состояния олигомеров в твердое неплавкое и нерастворимое состояние полимеров- полиэпоксидов. То есть молекулы эпоксидной смолы сшиваются и приобретают сетчатую структуру. Теплостойкость отвержденных компаундов 150… 250 °С. Наибольшее распространение получили компаунды холодного отверждения, как наиболее простые в использовании. Но они имеют ряд недостатков, которые приводят в дальнейшем к растрескиванию, расслаиванию, пожелтению изготовленных из них деталей автомобиля. Это обусловлено их низкой стойкостью к воздействию ультрафиолета, высоких температур. Этого можно избежать, если покрыть поверхность лаком, краской и добавив наполнитель. Изделие получится более тяжелым, но зато и более прочным. Для изготовления карбона применяются методы с использованием всех видов компаундов, что определяется размерами детали, навыками и оснасткой. Достоинства эпоксидных смол и компаундов Эпоксидные смолы для карбона и компаунды на их основе являются популярным и оптимальным связующим для волокнистых армирующих материалов. И для этого у них есть широкий спектр потребительских и технологических достоинств: Отличная адгезия к большинству армирующих материалов, наполнителей и подложек; Большой выбор марок эпоксидных смол и отверждающих агентов с разнообразными техническими параметрами, что позволяет получить после отверждения материалы с широким спектром свойств; Химическая реакция между эпоксидными смолами и отвердителями протекает без выделения воды и летучих веществ — процесс контролируем и безопасен (необходимо учитывать количество тепла в некоторых рецептурах). Усадка при отверждении ниже, чем с использованием фенолформальдегидных или полиэфирных смол, и ее величину легко регулировать применением различных наполнителей; Современные модификации эпоксидных смол дают возможность выбрать марку с определенной температурой, скоростью и временем отверждения, что очень важно при массовом производстве; Отвержденные компаунды прекрасные диэлектрики с высоким объемным сопротивлением. Они устойчивы к воздействию воды, высоких температур, кислот и щелочей. Но изначально эпоксидные смолы применялись только в качестве универсальных клеев, заливки обмоток трансформаторов и двигателей, герметизации стыков электрических кабелей, при изготовлении моделей и форм. При появлении углеродного полотна и с развитием композиционных материалов эпоксидные смолы нашли широкое применение при изготовлении углепластиков. Поэтому наряду с использованием эпоксидных компаундов в качестве клеев они находят применение при получении слоистых пластиков и волокнисто-намоточных композитов в электронной, химической, автомобильной промышленности и при изготовлении спортивного инвентаря. Компаунды холодного отверждения «Холодные» технологии требуют продолжительной подготовки оснастки и дополнительного оборудования для вакуумных процессов удаления воздуха из смеси. Этот метод трудоемок и пригоден для мелкосерийного производства деталей определенного сечения. Все компоненты необходимо тщательно перемешивать и строго дозировать. Отверждение происходит при комнатной температуре или при нагреве до 70-80 С. Все, что выше, относится к компаундам горячего отверждения. Компаунды горячего отверждения Эпоксидные смолы горячего отверждения прочнее, но при комнатной температуре полимеризация идет очень медленно. Это свойство используется при изготовлении препрегов — заготовок для формования. Они представляют листы карбона, в которых смола с отвердителем...

Изготовление деталей из углепластика (карбона)

Качество деталей из карбона в первую очередь зависит от правильного выбора и качества смолы и углеродного полотна. При ошибках в выборе плотности полотна карбона карбона и скорости застывания смоляной смеси вы не сможете аккуратно выложить заготовку в форме, плотно прижать и полностью удалить пузырьки воздуха. К основным методам изготовления деталей из карбона можно отнести: формование из препрегов, то есть полуфабрикатов, формование непосредственно в форме, метод аппликации. Изготовление карбона дома не требует сложного оборудования, и при определенных навыках можно получить детали достойного качества. Поэтому сделать карбон удовлетворительного качества самому вполне реально. Карбон для автотюнинга А вот для изготовления некоторых облегченных элементов, где требуется высокая прочность, например, для бамперов, капотов, мелких деталей кузова, может использоваться дорогостоящий настоящий карбон. Но необходимо помнить, что этот материал очень чувствителен к точечным ударам, и есть риск повреждения мелкими камнями и щебнем из-под колес. И здесь определяющую роль играет мастерство автомастера, насколько совершенно он владеет навыками подбора полотна, смолы и толщины слоев. А восстановление — тоже дорогостоящий процесс. Можно попробовать даже сделать обтяжку карбоном своими руками некрупных элементов. Если же для вас главную роль играют эстетические параметры, а не облегчение веса автомобиля или мотоцикла, то присмотритесь к ПВХ-пленкам «под карбон», аква-печати или аэрографии. Метод препрегов Промышленный процесс формования изделия из препрега (заготовок для формования) в автоклаве представляет собой одновременное протекание сложных процессов: полимеризацию компаунда, вакуумное удаление воздуха и излишков смолы, высокое давление ( до 20 атм) прижимает все слои к матрице, уплотняя и выравнивая их. Это дорогостоящий процесс, поэтому для мелкосерийного тюнинга в домашних условиях малопригодный. Разделение этих процессов удешевляет и удлиняет всю процедуру получения карбона самостоятельно. Изменения при этом вносятся в технологию подготовки препрега, поэтому всегда нужно обращать внимание, для какой технологии предназначена заготовка. В этом случае препрег готовится в виде сэндвича. После нанесения смолы заготовка с обеих сторон покрывается полиэтиленовой пленкой и пропускается между двух валов. При этом лишняя смола и нежелательный воздух удаляются. Препрег вдавливается в матрицу пуансоном, и вся конструкция помещается в термошкаф. То есть в данном случае препрег представляет полностью готовую к формованию заготовку, с обжатыми слоями и удаленным воздухом. Этот метод чаще всего и используют автомастерские, покупая заготовки карбона, а матрицы изготавливаются из алебастра или гипса, иногда вытачиваются из металла или в качестве модели используется сама деталь. которую вы хотите повторить из карбона. Иногда модели вырезаются из пенопласта и остаются внутри готовой детали. Для самостоятельного изготовления карбона чаще всего используют метод «обтяжки» или аппликации углеполотна на заготовку. Метод аппликации (ручная оклейка) Сделать карбон своими руками можно методом оклейки, который включает пять основных этапов: Тщательная подготовка оклеиваемой поверхности: зашкуривание, обезжиривание, скругление углов. Нанесение адгезива. Приклеивание углеткани с пропитыванием эпоксидной смолой с отвердителем. Сушка. Покрытие защитным лаком или краской. Наполнители для смолы используют как для придания декоративности, так и для предотвращения стекания смолы с вертикальных поверностей. Необходимые материалы: Адгезив для фиксации углеткани на поверхности. Ткань из углеволокна, которую укладывают на смолу послойно, с прикатыванием твердым валиком. Эпоксидная смола средней вязкости с отвердителем (иногда она используется в качестве адгезива). Защитный лак. Лучше всего для защиты от царапин подходит полиуретановый. Нужно выбирать водостойкий и светостойкий. Он не помутнеет. Для высокого блеска в качестве финишного покрытия можно использовать...

Что такое карбон (углепластик)?

Углепластик — это композиционный многослойный материал, представляющий собой полотно из углеродных волокон в оболочке из термореактивных полимерных (чаще эпоксидных) смол, Carbon-fiber-reinforced polymer . Международное наименование Carbon — это углерод, из которого и получаются карбоновые волокна carbon fiber. Но в настоящее время к карбонам относят все композитные материалы, в которых несущей основой являются углеродные волокна, а вот связующее сможет быть разным. То есть карбон и углепластик объединились в один термин, привнеся путаницу в головы потребителей. То есть карбон и углепластик — это одно и то же. Это инновационный материал, высокая стоимость которого обусловлена трудоемким технологическим процессом и большой долей ручного труда при этом. По мере совершенствования и автоматизации процессов изготовления карбона его стоимость будет снижаться. Для примера: стоимость 1 кг стали — менее 1 доллара, 1 кг карбона европейского производства стоит около 20 долларов. Удешевление возможно только за счет полной автоматизации процесса. Применение карбона Изначально карбон был разработан для спортивного автомобилестроения и космической техники, но благодаря своим отличным эксплуатационным свойствам, таким как малый вес и высокая прочность, получил широкое распространение и в других отраслях промышленности: в самолетостроении, для спортивного инвентаря: клюшек, шлемов, велосипедов. удочек, медицинской техники и др. Гибкость углеродного полотна, возможность его удобного раскроя и резки, последующей пропитки эпоксидной смолой позволяют формовать карбоновые изделия любой формы и размеров, в том числе и самостоятельно. Полученные заготовки можно шлифовать, полировать, красить и наносить флексопечать. Технические характеристики и особенности карбона Популярность углепластика объясняется его уникальными эксплуатационными характеристиками, которые получаются в результате сочетания в одном композите совершенно разных по своим свойствам материалов — углеродного полотна в качестве несущей основы и эпоксидных компаундов в качестве связующего. Армирующий элемент, общий для всех видов углепластика — углеродные волокна толщиной 0,005-0,010 мм, которые прекрасно работают на растяжение, но имеют низкую прочность на изгиб, то есть они анизотропны, прочны только в одном направлении, поэтому их использование оправдано только в виде полотна. Дополнительно армирование может проводиться каучуком, придающим серый оттенок карбону. Карбон характеризуются высокой прочностью, износостойкостью, жёсткостью и малой, по сравнению со сталью, массой. Его плотность — от 1450 кг/м³ до 2000 кг/м³. Технические характеристики углеволокна можно посмотреть в сравнительной таблице плотности, температуры плавления и прочностных характеристик. Еще один элемент, используемый для армирования вместе с углеродными нитями — кевлар. Это те самые желтые нити, которые можно видеть в некоторых разновидностях углепластика. Некоторые недобросовестные производители выдают за кевлар цветное стекловолокно, окрашенные волокна вискозы, полиэтилена, адгезия которых со смолами гораздо хуже, чем у углепластика, да и прочность на разрыв в разы меньше. Кевлар—это американская торговая марка класса полимеров арамидов, родственных полиамидам, лавсанам. Это название уже стало нарицательным для всех волокон этого класса. Армирование повышает сопротивление изгибающим нагрузкам, поэтому его широко используют в комбинации с углепластиком. Особенности технологии изготовления углеродного волокна Волокна, состоящие из тончайших нитей углерода, получают термической обработкой на воздухе, то есть окислением, полимерных или органических нитей (полиакрилонитрильных, фенольных, лигниновых, вискозных) при температуре 250 °C в течение 24 часов, то есть практически их обугливанием. Вот так выглядит под микроскопом нить после обугливания. После окисления проходит карбонизация — нагрев волокна в среде азота или аргона при температурах от 800 до 1500 °C для выстраивания структур, подобных молекулам графита. Затем проводится графитизация (насыщение углеродом) в этой же среде при температуре 1300-3000 °C. Этот процесс может повторяться несколько...

Углепластик (carbon)

Углепластики: изготовление, свойства и применение

Углепластики (карбопластики, углеродопласты) — это композиты, содержащие в качестве наполнителя углеродные волокна. Этот сравнительно новый класс ПКМ получил в последние годы наиболее интенсивное развитие благодаря своим уникальным свойствам, а именно: высоким значениям прочности и жесткости низкой плотности химической инертности тепло- и электропроводности высокой усталостной прочности низкой ползучести низким значениям коэффициента линейного термического расширения высокой радиационной стойкости Важным фактором, определяющим в некоторой степени перспективность углепластиков, является их хорошая технологичность, позволяющая перерабатывать углепластики в изделия на стандартном технологическом оборудовании с минимальными трудовыми и энергетическими затратами. В зависимости от вида углеродного армирующего наполнителя, его текстурной формы и геометрических размеров углепластики можно разделить на три группы: углеволокниты углетекстолиты углепресволокниты Углепластики на основе непрерывных ориентированных углеродных нитей, жгутов и ровниц составляют группу углеволокнитов. Наиболее представительная группа углепластиков — углетекстолиты, в которых в качестве армирующего наполнителя используют тканые ленты и ткани различных текстурных форм. Углепластики на основе дискретных волокон составляют группу углеволокнитов. Армирующие наполнители Процесс изготовления углеродных волокон заключается в последовательном температурном и механическом воздействиях на исходные органические волокна, приводящих к их карбонизации, графитации и совершенствованию структуры. На первом этапе нагрев исходных растянутых волокон до температуры 220 °С приводит к образованию поперечных химических связей между макромолекулами полимера. На втором этапе нагрев до температуры 1000 °С позволяет получить так называемые карбонизованные волокна, на 80…95 % состоящие из элементарного углерода и обладающие достаточно высокой прочностью. На третьем этапе (термообработка до температуры 1500…2000 °С) получают конечный продукт — графитизированное углеродное волокно с кристаллической структурой, близкой к структуре графита. В зависимости от условий получения и типа исходного сырья предел прочности и модуль упругости углеродных волокон находятся соответственно в пределах 2…3,5 ГПа и 220…700 ГПа. Наибольшей прочностью обладают волокна, которые при нагреве на последнем этапе (Т = 1600 °С) имеют мелкокристаллическую структуру. Высокомодульные материалы получают в результате растяжения волокна при температуре 2700 °С. В качестве армирующих элементов углеродные волокна применяют в виде жгутов, лент и тканей. Они являются более хрупкими и менее технологичными, чем стеклянные, отличаются химической инертностью, низкой поверхностной энергией, обусловливающей плохое смачивание волокон растворами и расплавами матричных материалов, что в итоге приводит к низкой прочности сцепления на границе «волокно-матрица». Основное достоинство — высокая жесткость. Механические характеристики остаются постоянными до температуры 450 °С, что позволяет применять углеродные волокна с полимерной и металлической матрицами. Волокна характеризуются отрицательным коэффициентом линейного расширения, что в совокупности с положительным коэффициентом у матрицы позволяет синтезировать композиции для конструкций, сохраняющих свои размеры при температурном воздействии. Углеродные волокна используют для изготовления элементов, необходимая жесткость которых является условием, снижающим эффективность применения материалов, армированных стеклянными волокнами. Стоимость углеродных волокон на два порядка выше, чем стеклянных. Полимерные матрицы Полимерная матрица определяет эксплуатационные и технологические свойства углепластика. Для углепластиков используют как термореактивные, так и термопластичные матрицы. Из термореактивных матриц наибольшее рас-пространение получили эпоксидные связующие: эпоксидно-анилинофенолформальдегидное марки 5-211-Б, эпоксинаволачное — УНДФ, эпоксидное модифицированное диапластом — УП-2227, на основе тетрафункциональной эпоксидной смолы связующее — ВС-2526к, на основе смеси трех эпоксидных смол связующее — ЭДТ-69Н. Применение эпоксидных матриц обеспечивает получение углепластиков с высокими прочностными характеристиками, водостойкостью и химической стойкостью, хорошей эксплуатационной надежностью и ресурсом. Из термопластичных матриц нашли применение полиимидная СП-97, полиамидоимидная ПАИС-104 и полисульфон,...

✪Устройство автомобиля Авто⚡сайт №❶