Всё для ремонта авто

Меню

Метка: Воздух

Достоинства и недостатки воздухозаборника

Спортивные машины давно покорили сердца активных молодых людей. Обычно в таких моделях авто присутствует одна интересная деталь – воздухозаборник, располагающийся на капоте. Воздухозаборник из спортивных машин перекочевал на обычные легковушки и даже на внедорожники. Некоторые воспринимают его как декоративную деталь, другие же утверждают, что от него есть и практическая польза.

Воздухозаборник на капот

Польза воздухозаборника

У некоторых автомобилей отечественного производства и внедорожников двигатель располагается не поперечно, а вдоль. Казалось бы, разницы нет, но такое расположение серьезно влияет на теплоотдачу. Так, остывание цилиндров происходит неравномерно. Обычно последний цилиндр не успевает должным образом остыть, поэтому выходит из строя раньше остальных. Установка воздухозаборника поможет решить эту проблему.

Аналогичная ситуация с теплоотдачей может возникать у автомобилей, оснащенных системой турбонаддува. Чтобы не происходил перегрев двигателя, необходимо обеспечить постоянную циркуляцию воздуха под капотом. Установка воздухозаборника не только пойдет на пользу двигателю, но и уменьшит расход моторного масла и бензина.

Из всего вышесказанного можно сделать вывод, что воздухозаборник является не просто красивым аксессуаром — он выполняет важные функции. Воздухозаборник обеспечивает вентиляцией пространство под капотом, тем самым охлаждает детали, препятствует их перегреву и понижает риск возгорания, поскольку во время вентиляции происходит улетучивание горючих паров.

Автомобиль с воздухозаборником выглядит агрессивно и динамично. В продаже существует большое количество воздухозаборников, поэтому каждый водитель сможет найти оптимальную модель для своего железного коня.

Недостаток воздухозаборника

Существует один серьезный недостаток воздухозаборника – через него под капот попадает пыль и грязь, в результате чего двигатель и его элементы быстрее загрязняются, что впоследствии влияет на теплоотдачу. Решение проблемы есть – необходимо чаще производить чистку деталей от загрязнений. Опытные водители утверждают, что при ежедневной езде очищать подкапотное пространство необходимо минимум 2 раза в месяц.

Контроль системы впуска добавочного воздуха

При холодном запуске и в фазе прогрева смесь необходимо обогащать для обеспечения ровной работы двигателя. Степень обогащения в основном зависит от температуры и нагрузки на двигатель. В этой фазе катализатор еще не работает, так как преобразование вредных веществ начинается лишь при 250°С. Выбросы оксида углерода и углеводородов в ОГ очень велики.

Контроль вентиляции топливного бака и системы впуска добавочного воздуха

Рис. Контроль вентиляции топливного бака и системы впуска добавочного воздуха

В этих фазах система впуска добавочного воздуха с помощью дополнительного насоса (4) вводит наружный воздух через клапан в выпускной коллектор. Активизация выполняется после запуска двигателя примерно на 2 минуты. В результате вредные вещества термически окисляются, и температура ОГ повышается. Катализатор быстрее нагревается до рабочей температуры. Одновременно обеспечивается необходимый катализатору кислород для реакций окисления.

У некоторых систем система впуска добавочного воздуха закачивает наружный воздух в выпускной коллектор даже при высокой температуре. При температуре ОГ более 600°С между коллектором и катализатором может произойти термическое окисление углеводородов и оксида углерода, и часть вредных веществ будет преобразована еще до катализатора. Это повышает КПД катализатора по оставшимся вредным веществам и замедляет его старение.

Проверка системы впуска добавочного воздуха выполняется спорадически и обеспечивается через напряжение лямбда-зонда и контроль контура лямбда-регулирования. Проверка относится к впуску добавочного воздуха и функции клапана добавочного воздуха. Благодаря впуску добавочного воздуха регулирование лямбда-зонда находится больше в диапазоне бедной смеси. При обогащении смеси и одновременной активизации системы впуска добавочного воздуха лямбда-зонд должен отправлять сигнал бедной смеси. Циклы регулировки контура лямбда-регулирования в диапазоне бедной смеси подсчитываются на единицу времени, их должно быть больше определенного количества. При снижении ниже минимального предела регистрируется неисправность и загорается индикатор MIL.

В системах с широкополосными лямбдазондами возможна более точная проверка системы через проточную диагностику. При этом во время первого холостого хода после пуска система впуска добавочного воздуха подключается на определенное время. Необходимым условием является достаточно длительная фаза холостого хода. Лямбда-зонд распознает избыток воздуха, но не выполняет корректировку. По отклонению сигнала лямбда-зонда электроника вычисляет расход воздуха, проходящего через систему впуска добавочного воздуха. Электроника определяет разность при активной и неактивной системах впуска добавочного воздуха и сравнивает ее с номинальными значениями. Дополнительно к расходу воздуха проверяется правдоподобность сигналов всех электрических компонентов системы.

Приборы и устройства для измерения расхода воздуха

Расход воздуха определяется как косвенным путем — измерением параметров, характеризующих среднюю или мгновенную скорость движения потока, так и прямым измерением объема воздуха, проходящего через измеряемое устройство в единицу времени.

Дроссельные устройства

Рис. Дроссельные устройства: а — с диафрагмой и распределением давлении при протекании потока газа через диафрагму; б — с соплом; в — трубка Вентури

Косвенные методы используются при измерении расхода воздуха с помощью дроссельных устройств — диафрагмы, сопла, грубки Вентури, а также насадки со свободным входом, так называемой коноидальной насадки.

Расход воздуха определяется в этом случае по перепаду статистического давления до (сечение А—А) и после (сечение Б—Б) сужения дроссельного устройства. Для измерения перепада давления применяют пьезометры и дифференциальные манометры.

Связь между перепадом давлений на дроссельном устройстве и расходом воздуха определяется из уравнения неразрывности и управления Бернулли:

Gв = 0,004 * md^2 * корень_из_(дельта_p*pв)

где Gв — часовой расход воздуха; m — коэффициент расхода дроссельного устройства; d — диаметр отверстия (сужения) дроссельного устройства; дельта_p — перепад давления на дроссельном устройстве; рв — плотность воздуха.

Измерение объемного расхода воздуха осуществляется объемным расходомером или ротационным счетчиком, в корпусе которого установлено два ротора, вращающихся под действием давления движущегося воздушного потока с частотой вращения, зависящей от скорости потока.

По измеренному объему воздуха, прошедшего через расходомер за время t, определяется массовый расход воздуха за секунду:

Gв = Vpв*t

Расходомеры воздуха. Устройство и принцип действия

Расходомеры воздуха и датчики, применяемые для систем впрыска бензиновых двигателей имеют распространение и для дизельной топливной аппаратурой с электронным управлением, поэтому в разделах по дизельной аппаратуре они не будут рассматриваться.

Расходомер с поворотными заслонками

Расходомер воздуха расположен между воздухоочистителем и корпусом дроссельной заслонки.

Расходомер воздуха с поворотными заслонками

Рис. Расходомер воздуха с поворотными заслонками:
1 – подача напряжения от электронного блока управления; 2 – датчик температуры поступающего воздуха; 3 – подвод воздуха от воздушного фильтра; 4 – спиральная пружина; 5 – демпфирующая камера; 6 – заслонка демпфирующей камеры; 7 – подача воздуха к дроссельной заслонке; 8 – заслонка напора воздуха; 9 – обводной канал; 10 – потенциометр

Принцип действия расходомера основан на так называемом сопротивлении среды. Он измеряет усилие, действующее на заслонку 8, которую поток воздуха, поступающего в двигатель, заставляет поворачиваться на определенный угол, преодолевая усилие спиральной пружины. Момент закручивания пружины выбран так, чтобы заслонка создавала незначительную потерю напора. Для предотвращения колебаний напорной заслонки под действием потока воздуха проходящего по впускному трубопроводу, особенно на режиме холостого хода, предусмотрена демпфирующая камера 5, в которой расположена заслонка 6, имеющая такую же рабочую поверхность, как и заслонка напора воздуха 8. Объем демпферной камеры, а также зазор между заслонкой 6 демпфирующей камеры и корпусом подобраны так, чтобы напорная заслонка была способна отслеживать быстрые изменения расхода воздуха при разгоне.

Соединенный с осью напорной заслонки потенциометр преобразует механическое перемещение напорной заслонки в изменение электрического напряжения, которое передается в блок управления для точной дозировки топлива.

Напряжение аккумулятора через главное реле системы подается на резистор, расположенный внутри корпуса датчика. Балластный резистор понижает напряжение до уровня от 5.0 до 10.0 В. Это напряжение подводится к разъему блока управления и к крайнему выводу реостата потенциометра. Второй вывод реостата со­единен с массой. Сигнал потенциометра снимается с движка через кон­такт датчика на контакт блока управления.

Внутренняя геометрия расходомера обеспечивает логарифмическую корреляцию между потоком воздуха и угловым положением напорной заслонки, что позволяет рассчитывать оптимальный состав смеси на режимах малых нагрузок.

Потенциометр установлен в герметичном корпусе и состоит из керамического основания с рядом контактов и нескольких резисторов. Сопротивление резисторов постоянно и не зависит от резких колебаний температуры в моторном отсеке.

Для исключения влияния напряжения аккумуляторной батареи на сигнал, выдаваемый потенциометром, электронный блок управления учитывает разницу между этим напряжением и выходным напряжением расходомера воздуха.

Параллельно с электрической цепью расходомера воздуха включен датчик температуры всасываемого воздуха. Он представляет собой резистор с отрицательным температурным коэффициентом, т. е. его сопротивление уменьшается при увеличении температуры. Сигналы, поступающие от датчика, изменяют выходной сигнал расходомера в зависимости от температуры поступающего воздуха.

Обводной канал 9 под напорной заслонкой служит для прохода воздуха на холостом ходу.

Расходомер воздуха с нагреваемой нитью

Преимущество таких датчиков отсутствие механически подвижных деталей, что определяет их большую долговечность.

Расходомер подобной конструкции является термическим датчиком нагрузки двигателя.

Расходомер воздуха с проволочным нагревательным элементом

Рис. Расходомер воздуха с проволочным нагревательным элементом (нитью):
1 – температурный датчик; 2 – кольцо датчика с проволочным нагревательным элементом; 3 – прецизионный реостат; Qм – массовый расход воздуха в единицу времени

Его устанавливают между воздушным фильтром и дроссельной заслонкой, и он определяет массу всасываемого воздуха в кг/час. Датчики с нагре­ваемой нитью и с нагреваемой пленкой имеют один и тот же принцип работы. Расположенный в воздушном потоке и нагревае­мый электрическим током про­водник (платиновая нить или токопроводящая полимерная плен­ка) охлаждается обтекающим его воздухом.

Нить нагревается электрическим током, и температура ее поддер­живается постоянной. Если нить охлаждается, то проходящий через нее ток увеличивается до тех пор, пока температура нити не восста­навливается до первоначальной величины. Изменение силы тока воспринимается в блоке управления и является измеряемым пара­метром для определения расхода всасываемого воздуха. Встроенный датчик температуры служит для того, чтобы температура всасывае­мого воздуха не искажала результаты измерений.

Поступающий поток воздуха обтекает нагретый электрическим током проводник, который встроен в измеритель воздушной массы. Специальная электронная схема управления поддерживает постоян­ную температуру проводника относительно температуры поступаю­щего воздуха. При увеличении количества поступающего воздуха проводник будет охлаждаться. Величина тока нагрева, требуемого для сохранения постоянной температуры проводника, является ме­рой массы воздуха, поступающего в двигатель. Этот ток преобразу­ется в импульсы напряжения, которые обрабатываются блоком управления как основной входной параметр наравне с частотой вращения коленчатого вала двигателя. Кроме того, блок управления получает информацию о темпера­туре охлаждающей жидкости и поступающего воздуха. На основе входных сигналов блок управления выдает импульсы времени впры­ска топлива на форсунки.

Загрязнение нагреваемой нити может привести к искажению результатов измерений. Поэтому после каждой остано­вки двигателя нить подвергается воздействию повышенной темпера­туры и тем самым очищается.

Расходомер воздуха с пле­ночным термоанемометром

Измерительный патрубок 2 вмонтирован в массовый расходомер воздуха, который в зависимости от требуемого дви­гателем расхода воздуха имеет различ­ные диаметры. Он устанавливается во впуск­ном канале за воздушным фильтром. Воз­можен также вариант встроенного измери­тельного патрубка, который устанавливается внутри воздушного фильтра.

Воздух, входящий во впускной коллектор, обтекает чувствительный элемент датчика 5, который вместе с вычислительным кон­туром 3 является основным компонентом датчика.

Входящий воздух проходит через об­водной канал 7 за чувствительным эле­ментом датчика. Чувствительность датчика при наличии сильных пульсаций потока мо­жет быть улучшена применением соответ­ствующей конструкции обводного канала, при этом определяются также и обратные токи воздуха. Датчик соединяется с ЭБУ через выводы 1.

Схема массового расходомера воздуха с пленочным термоанемометром

Рис. Схема массового расходомера воздуха с пленочным термоанемометром:
1 — выводы электрического разъема, 2 — измери­тельный патрубок или корпус воздушного фильт­ра, 3 — вычислительный контур (гибридная схе­ма), 4 — вход воздуха, 5 — чувствительный эле­мент датчика, 6 — выход воздуха, 7 — обводной канал, 8 — корпус датчика.

Принцип работы массового расходомера воздуха заключается в следующем. Микромеханическая диафрагма датчика 5 на чувствительном элементе 3 нагревается центральным нагревающим резистором. При этом имеет место резкое падение температуры на каждой стороне зоны нагрева 4.

Распределение температуры по диафраг­ме регистрируется двумя температурозависимыми резисторами, которые устанавли­ваются симметрично до и после нагреваю­щего резистора (точки измерения М1 и М2). При отсутствии потока воздуха на впуске температурная характеристика 1 одинакова на каждой стороне измеритель­ной зоны (Ti = T2). Как только поток воздуха начинает обтекать чувствительный элемент датчика, распределение температуры по диафрагме меняется (характеристика 2).

Принцип измерения массового расхода воздуха пленочным термоанемометром

Рис. Принцип измерения массового расхода воздуха пленочным термоанемометром:
1 – температурная характеристика при отсутствии потока воздуха 2 – температурная характеристика при наличии потока воздуха; 3 – чувствительный элемент датчика; 4 – зона нагрева; 5 – диафрагма датчика; 6 – датчик с измерительным патрубком; 7 – поток воздуха; М1, М2 – точки измерения, Т1, Т2 – значения температуры в точках измерения M1 и М2; ΔT – перепад температур

На стороне входа воздуха температурная характеристика является более крутой, пос­кольку входящий воздух, обтекающий эту поверхность, охлаждает ее. Вначале на про­тивоположной стороне (сторона, наиболее близко расположенная к двигателю) чувствительный элемент датчика охлажда­ется, но затем воздух, подогреваемый наг­ревательным элементом, нагревает его. Из­менение в температурном распределении (ΔT) приводит к перепаду температур меж­ду точками измерения М1 и М2.

Тепло рассеивается в воздухе и, следова­тельно, температурная характеристика чувствительного элемента датчика является функцией массового расхода воздуха. Раз­ница температур, таким образом, есть мера массового расхода воздуха и при этом она не зависит от абсолютной температуры про­текающего потока воздуха. Кроме этого, разница температур является направлен­ной. Это означает, что массовый расходо­мер не только регистрирует количество вхо­дящего воздуха, но также и его направление.

Благодаря очень тонкой микромеханичес­кой диафрагме датчик имеет очень высокую динамическую чувствительность (<15 мс), что очень важно при больших пульсациях входя­щего воздуха.

Разница сопротивлений в точках измере­ния М1 и М2 преобразуется встроенным в датчик вычислительным (гибридной схе­мой) контуром в аналоговый сигнал напря­жением 0…5 В. Такой уровень напряжения подходит для обработки сигналов в ЭБУ. Используя характеристику датчика, запрограммированную в ЭБУ, измеренное напряжение преобразуется в величину, представляющую массовый расход воздуха (кг/ч). Форма кривой характеристики явля­ется такой, что диагностические устрой­ства, встроенные в ЭБУ, могут определять такие нарушения, как обрыв цепи.

В датчик может также быть вмонти­рован температурный датчик для выполне­ния вспомогательных функций. Он распола­гается в пластмассовом корпусе и не явля­ется обязательным для измерения массо­вого расхода воздуха.

Пленочный расходомер воздуха

Этот датчик состоит из толстопленочной диафрагмы, расположенной на керамической основе. Датчик измеряет разрежение во впускном коллек­торе на основе измерения деформации пленочной диафрагмы. При определенных коэффициентах расширения керамической подложки и керамической пленочной крышки в результате охлаждения стыка диафрагма принимает форму купола. В результате получается пустотелая камера (пузырек) высотой примерно 100 мкм и диаметром 3…5 мм. Измерительные пьезоэлектрические элементы расположенные внутри пленки преобразуют перемещения диафрагмы в электрический сигнал.

Пленочный расходомер воздуха

Рис. Пленочный расходомер воздуха:
1 – измерительная цепь; 2 – диафрагма; 3 – камера эталонного давления; 4 – измерительный элементы; 5 – керамическая подложка

Датчик давления воздуха в коллекторе

Отдельные системы с электронным управлением впрыска топлива содержат датчик давления воздуха в коллекторе, определяющий нагрузку двигателя и количество перепускаемых газов при рециркуляции. Помимо этого по сигналу датчика определяется нагрузка двигателя при пуске, так как измеритель расхода воздуха работает на этом режиме недостаточно точно из-за сильных пульсаций во впускной системе.

Датчик соединен вакуумным шлангом с впускным коллектором. Разрежение в коллекторе действует на мембрану. На мембране находятся тензорезисторы, сопротивление которых изменяется при деформации мембраны. Измеряемое давление при этом сравнивается с эталонным разрежением под мембраной. Мембрана прогибается в зависимости от давления во впускном трубопроводе, при этом изменяется напряжение на выходе датчика, создаваемое в результате изменения сопротивления тензорезисторов. Это напряжение используется в блоке управления для определения величины давления во впускном трубопроводе.

Абсолютное дав­ление в коллекторе вычисляется как атмосфер­ное давление минус разрежение в коллекторе. Питание датчика осуществляется эталон­ным напряжением 5,0 В. Сигнал датчика в виде напряжения, меняющегося в зависимости от давления, подается на БЭУ. На холостом ходу это напряжение составляет примерно 1,0 В, при полной нагрузке оно повышается до 4,5 В.

Датчик давления воздуха во впускном коллекторе

Рис. Датчик давления воздуха во впускном коллекторе:
1 – полость разряжения; 2 – полупроводниковые элементы; 3 – мембрана; а – положение мембраны при малом разряжении; б – положение мембраны при большом разряжении

Массовый расход воздуха, поступающего в двигатель, БЭУ вычисляет с учетом плотности, определяемой по значению абсолютного дав­ления и температуры воздуха в коллекторе, а также частоты вращения коленчатого вала.

Турбонаддув. Подача дополнительного воздуха в цилиндры двигателя

Мощность, развиваемая двигателем, зависит от количества воздуха и смешанного с ним топлива, которое может быть подано в двигатель. Если нужно увеличить мощность дви­гателя, следует увеличить как количество подаваемого воздуха, так и топлива. Подача большего количества топлива не даст эффекта до тех пор, пока не появится достаточное для его сгорания количество воздуха, иначе образуется избыток несгоревшего топлива, что приводит к перегреву двигателя и повышенной токсичности отработавших газов.

Увеличение мощности двигателя может быть достигнуто путем увеличения либо его рабочего объема, либо частоты вращения коленчатого вала. Увеличение рабочего объема увеличивает вес, размеры двигателя и, в конечном итоге, его стоимость. Увеличение частоты вращения коленчатого вала проблематично из-за возникающих при этом технических проблем, особенно для двигателей с большим рабочим объемом.

Технически приемлемым решением проблемы увеличения мощности является использование нагнетателя (компрессора). Это означает, что подающийся в двигатель воздух сжимают перед его впуском в камеру сгорания.

Другими словами, компрессор обеспечивает подачу необходимого количества воздуха, достаточного для полного сгорания увеличенной дозы топлива. Следовательно, при прежнем рабочем объеме и той же частоте вращения коленчатого вала мы получаем большую мощность.

Основные системы наддува. Их работа

Существует две основные системы наддува:

  • с механическим приводом
  • «турбо» (использующие энергию отработавших газов)

Кроме того, существуют также комбинированные системы, например, турбокомпаундная.

Системы наддува двигателей

Рис. Системы наддува двигателей:
1 ­– нагнетательное колесо; 2 – привод компрессора; 3 – коленчатый вал; 4 – приводное колесо

В случае компрессора с механическим приводом необходимое давление воздуха получают благодаря механической связи между коленчатым валом двигателя и нагнетательным колесом или компрессором. В турбоком­прессоре давление воздуха получают благодаря вращению турбины потоком отработавших газов.

Турбокомпрессор состоит из двух турбин, состоящих из нагнетательного колеса 2 и приводного 9, связанных между собой при помощи вала. Вал установлен на двух опорах 11 и 12, на которые постоянно подается масло, охлаждающее и смазывающее опоры.

Обе турбины вращаются в одном направле­нии и с одинаковой скоростью. Выходящие из цилиндров двигателя отработавшие газы имеют высокую температуру и давление. Они разгоняются до большой скорости (около 10 000 об/мин) и вступают в контакт с лопатками приводного колеса 9, и преобразует их кинетическую энергию в механическую энергию вращения (крутящий момент). С такой же скорость вращается и нагнетательное колесо турбины 2, которое подает сжатый воздух к двигателю. Нагнетательное колесо 2 выполнено таким образом, что уже при небольшом потоке отработавших газов достигается достаточное давление нагнетаемого воздуха. В режиме полной нагрузки двигателя достигается максимальное избыточное давление (1,1…1,6 кгс/см2) при частоте вращения коленчатого вала около 2000 об/мин и поддерживается постоянным при дальнейшем наборе частоты вращения вплоть до максимальной.

Турбокомпрессор

Рис. Турбокомпрессор:

1 – трубопровод для подачи сжатого воздуха от турбины к диафрагме; 2 – нагнетательное колесо турбины; 3 – корпус нагнетательного колеса; 4 – промежуточный корпус; 5 – сбрасывающий клапан; 6 – диафрагма; 7 – пружина; 8 – диафрагменная камера; 9 – приводное колесо; 10 – корпус турбонагнетателя; 11,12 – опоры; А – подача воздуха от воздушного фильтра; B – подача воздуха к впускным клапаном; C – обводной канал сбрасывающего клапана для ограничения давления нагнетания; D – подача отработавших газов от двигателя; E – подача отработавших газов к выпускной системе; H – подача смазки; J – отвод смазки; K – подача сжатого воздуха для открытия сбрасывающего клапана

Между двигателем и турбокомпрессором существует связь только через поток отработавших газов. Частота вращения турбин напрямую не зависит от частоты вращения коленчатого вала двигателя и характери­зуется некоторой инерционностью, т.е. сначала увеличивается подача топлива, увеличивается энергия потока отработавших газов, а затем уже увеличивается частота вращения турбины и давление нагнетания, и в цилиндры двигателя поступает еще больше воздуха, что дает возможность увеличить подачу топлива. Этим объясняется повышенная дымность отработавших газов дизельных двигателей с наддувом.

Для предотвращения повышения давления больше необходимого при высоких частотах вращения предусмотрено специальное устройство состоящее из сбрасывающего клапана 5 и диафрагмы 6 с пружиной. Полость перед диафрагмой связана с давлением потока входящего воздуха через трубопровод 1. При увеличении давления, которое происходит с ростом частоты вращении коленчатого вала, диафрагма прогибается сжимая пружины и сбрасывающий клапан открывается. Отработавшие газы при этом проходят через дополнительный обводной канал С, что уменьшает частоту вращения приводного колеса турбины, а значит и нагнетательного колеса. Давление наддува при этом становится постоянным.

Для двигателей, работающих в широком диапазоне частот вращения коленчатого вала (к примеру, в легковом автомобиле), высокое давление наддува желательно даже на низких частотах. Именно поэтому будущее принадлежит турбокомпрессорам с регулируемым давлением. Небольшой диаметр современных турбин и специальные сечения газовых каналов способствуют уменьшению инерционности, т.е. турбина очень быстро разгоняется, и давление воздуха очень быстро достигает требуемого значения.

Для удовлетворения постоянно возрастающих требований, которые сегодня предъявляются к автомобильной технике в области расхода топлива, токсичности отработавших газов и уровня шума, разрабатываются электронные системы управлением наддувом, одна из которых представлена на рисунке.

На первом этапе, на основании определенного числа параметров, таких как температура охлаждающей жидкости, масла, впускаемого воздуха и отработавших газов, анализируется состояние двигателя. Измеряются также частота вращения коленчатого вала, положение педали акселератора и другие параметры. Все эти данные анализируются электронным блоком управления и используются для определения идеального в данных условиях давления наддува для двигателя.

На втором этапе это значение давления передается на исполнительные устройства, которые регулируют давление во впускной системе. При определении этого давления учитываются также критические условия работы двигателя, в частности, детонация. Аку­стические датчики позволяют распознать самовоспламенение, насколько малым бы оно ни было. Давление наддува в этом случае понижается. Эта операция повторяется до тех пор, пока детонация не исчезнет. Когда детонация прекращается, давление наддува снова возрастает до первоначального значения. Электронный блок управления также определяет идеальное давление наддува в случае повторяющейся детонации, во­зникающей, например, из-за использования низкокачественного топлива.

Электромагнитный клапан получает электрический сигнал, который определяет время его открывания, и работает, соответственно, как регулятор давления наддува.

Таким образом, на мембрану воздействует не все давление над­дува, а только его большая или меньшая часть, которая зависит от положения электромагнитного клапана.

При нажатой педали акселератора электронный блок управления подает команду на закрытие клапана, и все отработавшие газы направляются в турбину, из-за чего давление наддува возрастает и двигатель развивает зна­чительную мощность, что делает возможным резкое ускорение автомобиля. Как только желаемая скорость движения достигнута сбрасывающий клапан открывается, и давление наддува становится обычным.

Электронное управление турбонаддувом

Рис. Электронное управление турбонаддувом:
1 ­– информация о температуре всасываемого сжатого воздуха; 2 — информация о режиме работы двигателя; 3 — информация о температуре охлаждающей жидкости; 4 — информация о давлении во впускном трубопроводе: 5 — информация от датчика детонации; 6 –датчик детонации; 7 – двигатель; 8 – воздух, находящийся под давлением; 9 – заслонка моторного тормоза; 10 – электромагнитный клапан; 11 – воздушный фильтр; 12 — нагнетательное колесо; 13 – приводное колесо; 14 – сбрасывающий клапан; 15 – электронный блок управления

Волновой нагнетатель воздуха Comprex

Вариантом системы наддува для двигателей легковых автомобилей является волновой нагнетатель воздуха, известный также под названием Comprex. Приводимый от двигателя через зубчатый ремень 2, разделенный на секции ротор 7 вращается в цилиндрическом корпусе, имеющем с торцов щелевые окна для прохода свежего воздуха и выхода отработавших газов. Система окон и полостей выполнена особым образом, что позволяет волны давления потока 5 отработавших газов преобразовывать в повышенное давление потока 1 свежего воздуха.

Волновой нагнетатель

Рис. Волновой нагнетатель:
1 – поток свежего воздуха под высоким давлением; 2 – зубчатый ремень; 3 – поток свежего воздуха под низким давлением; 4 – поршень двигателя; 5 – поток отработавших газов под высоким давлением; 6 – поток отработавших газов низкого давлением; 7 – ротор; 8 – щелевые окна

Существенным достоинством волнового нагнетателя является непосредственный газодинамический энергообмен между отработавшими газами и свежим воздухом без участия каких-либо промежуточных механизмов. Такой энергообмен происходит со звуковой и сверхзвуковой скоростью. Волновой обменник, как и механический нагнета­тель, автоматически реагирует на изменения нагрузки изменением давления наддува. При постоянном передаточном отноше­нии между двигателем и волновым нагнетателем энергооб­мен оптимален только для одного рабочего режима. Для устране­ния этого недостатка на торцах корпуса имеется ряд воздуш­ных «карманов» раз­ной формы и размера, благодаря которым диапазон оптималь­ной работы нагнетате­ля расширяется. Кро­ме того, это позволяет достичь благоприят­ного протекания кри­вой крутящего момен­та, чего невозможно осуществить с помо­щью других методов наддува.

Волновой, нагнета­тель, по сравнению с другими способами наддува, требует мно­го места для ремен­ной передачи и систе­мы трубопроводов. Это усложняет возможность его установки в условиях огра­ниченного объема подкапотного про­странства автомобиля.

Нагнетатель с изменяемой геометрией турбины для дизельных двигателей

Для дизельных двигателей находит применение нагнетатель с изменяемой геометрией турбины, позволяющий ограничивать поток отработавших газов через турбину при высокой частоте вращения коленчатого вала двигателя.

Турбонагнетатель с изменяющейся геометрией турбины

Рис. Турбонагнетатель с изменяющейся геометрией турбины:
а – положение направляющих лопаток при высокой скорости потока отработавших газов; б – положение направляющих лопаток при низкой скорости потока отработавших газов; 1 – крыльчатка турбины; 2 – управляющее кольцо; 3 – подвижные направляющие лопатки соплового аппарата; 4 – управляющий рычаг; 5 – управляющий пневматический цилиндр; 6 – поток отработавших газов

Подвижные направляющие лопатки 3 соплового аппарата изменяют попе­речное сечение каналов, через которые отработавшие газы устремляются на крыльчатку турбины. Этим они согласовывают возникаю­щее в турбине давление газа с требуе­мым давлением наддува. При низкой на­грузке на двигатель подвижные лопатки открывают небольшое поперечное сече­ние каналов так, что увеличивается про­тиводавление отработавших газов. Поток газов развивает в турбине высокую скорость, обеспечи­вая высокую частоту вращения вала на­гнетателя. При этом поток отработавших газов дейст­вует на более удаленную от оси вала об­ласть лопаток крыльчатки турбины. Та­ким образом, возникает большее плечо силы, которое дополнительно увеличи­вает крутящий момент. При высокой на­грузке направляющие лопатки открыва­ют большее поперечное сечение кана­лов, что уменьшает скорость течения потока отработавших газов. Вследствие этого турбо­нагнетатель при равном количестве отработавших газов меньше ускоряется и работает с мень­шей частотой при большем количестве газов. Этим способом ограничивается давление наддува. Поворотом управляющего кольца 2 изменяется угол направления лопаток, которые устанавливаются на желаемый угол либо непосредственно отдельным управляющим рычагом 4, укрепленным на лопатках, либо поворотными кулачка­ми. Поворот кольца осуществляется при помощи управляющего пневматического цилиндра 5 под действием разрежения или давления воздуха либо, как вариант, при помощи электродвигателя с обрат­ной связью по положению лопаток (дат­чик положения). Нагнетатель с из­меняемой геометрией в положении покоя открыт и поэтому безопасен, т. е. при от­казе управления ни он сам, ни двигатель не повреждаются. Происходит лишь по­теря производительности на низких час­тотах вращения коленчатого вала.

Система подачи дополнительного воздуха в цилиндры двигателя

Токсичные продукты неполного сгорания топлива в цилиндрах двигателя на отдельных режимах его работы можно нейтрализовать в выпускном трубопроводе путем дожигания с помощью подачи дополнительного воздуха. Система подачи дополнительного воздуха обеспечивает снижение выброса токсичных веществ с ОГ после пуска холодного двигателя. При прогреве двигателя ОГ содержат повышенное количество несгоревших углеводородов. Непрогретый нейтрализатор не способен их переработать, так как его температура еще не достигла рабочих значений. Подача дополнительного воздуха в выпускной трубопровод как можно ближе к тарелке выпускного клапана обогащает ОГ кислородом. В результате этого создаются условия для дожигания их несгоревших компонентов. Выделяющееся при этом тепло ускоряет разогрев нейтрализатора до рабочих температур.

Подача дополнительного воздуха является дополнительной мерой снижения токсичности ОГ и входит в комплекс общих мер снижения токсичности ОГ.

Схема системы подачи дополнительного воздуха показана на рисунке.

Схема системы подачи дополнительного воздуха

Рис. Схема системы подачи дополнительного воздуха:
1 – блок управления двигателем; 2 – измеритель массового расхода воздуха с датчиком температуры воздуха на впуске в двигатель; 3 – датчик температуры охлаждающей жидкости; 4 – датчик частоты вращения коленчатого вала; 5 – реле насоса дополнительного воздуха; 6 – клапан управления подачей дополнительного воздуха; 7 – насос дополнительного воздуха; 8 – комбинированный клапан; 9 – подача дополнительного воздуха; 10 – нейтрализатор; 11 – датчик кислорода, устанавливаемый перед нейтрализатором; 12 – выпуск отработавших газов; 13 – датчик кислорода, устанавливаемый после нейтрализатора

Основными входными сигналами, поступающими на блок управления двигателем являются:

  • сигналы датчиков кислорода установленных после нейтрализатора 13 (сигналы датчиков 11, установленных перед нейтрализаторами, используются только для диагностики системы)
  • температура охлаждающей жидкости
  • сигналы измерителя массового расхода воздуха, соответствующие нагрузке двигателя

В соответствии с поступающими на вход сигналами, блок управления двигателем вырабатывают команды на включение насоса дополнительного воздуха 7 через реле 5 и открытие электромагнитного клапана управления подачей дополнительного воздуха 6. Распространяющееся через клапан управления разрежение приводит в действие комбинированный клапан 8, через который производится кратковременная подача подаваемого насосом воздуха в поток отработавших газов за выпускными клапанами. Помимо этого комбинированные клапаны предотвращают проникновение горячих ОГ в насосы дополнительного воздуха.

Система подачи дополнительного воздуха отключается при увеличении нагрузки двигателя.