Потребители электроэнергии. Сведения об электронных системах

Время на прочтение: 2 минут(ы)

Электрооборудование предназначено для обеспечения функционирования большинства систем транспортного средства.

Потребителями электроэнергии в транспортном средстве являются системы:

  • пуска двигателя (стартер)
  • освещения (наружного — фары, внутреннего — плафоны)
  • световой сигнализации (указатели поворота, стоп-сигнал)
  • звуковой сигнализации, связи (у гусеничных машин)
  • подогрева и электронные системы

Кроме того, электроэнергию потребляют контрольные приборы (амперметры, указатели температуры охлаждающей жидкости и др.), приводы управления механизмами и дополнительное оборудование (вентиляторы, стеклоочистители и т.д.).

Основным источником электроэнергии является генератор с приводом от двигателя ТС, а вспомогательном — аккумуляторная батарея. Источники энергии обеспечивают также зажигание рабочей смеси в цилиндрах карбюраторных и газовых двигателей, т.е. работу систем зажигания этих двигателей.

Источники электроэнергии связаны с потребителями проводами. На ТС (колесных и гусеничных) применяется однопров9дная система проводки, в которой положительные полюсы источников и потребителей, работающих только на постоянном токе, соединены друг с другом изолированными проводами. Отрицательные полюсы соединяются через металлические части ТС (корпус машины, рама и др.). Использование однопроводной системы обеспечивает экономию проводов и упрощает схему соединения электрооборудования. Приборы аварийного освещения некоторых ТС подключают к источникам электроэнергии с применением двухпроводной системы.

К электрооборудованию относятся также выключатели, отключатели «массы» (отсоединяющие отрицательный полюс источника электроэнергии от корпуса ТС), предохранители, приборы, обеспечивающие работу генератора и стартера. Выключатели, предохранители и соединительные панели, имеющиеся в электросхеме, составляют группу коммутационной аппаратуры. Приборы, кратковременно потребляющие ток большой силы, и приборы, работающие в аварийных случаях (например, стартер, сигнал, подкапотная лампа для подсветки и др.), подключены к линии «амперметр—аккумулятор», а остальные потребители электроэнергии — к линии «амперметр—генератор». Контрольные приборы, звуковой сигнал и подсветка включены в цепь через плавкие предохранители, защищающие их от перегрузки.

Схема автоматизации управления трансмиссией полноприводного автомобиля

Рис. Схема автоматизации управления трансмиссией полноприводного автомобиля

Схема электрооборудования гусеничной машины мало отличается от электросхемы автомобиля. Потребителями электроэнергии в гусеничных машинах являются, например, электродвигатели насосов, вентиляторов и других вспомогательных механизмов, а основными контрольно-измерительными приборами, обеспечивающими контроль за состоянием и работой всех систем, служат вольтамперметр, тахометр, спидометр, счетчик моточасов, манометры, термометры и др.

Вольтамперметр (комбинированный прибор) служит для измерения напряжения и силы тока, тахометр — для измерения частоты вращения коленчатого вала двигателя, а спидометр — для контроля скорости движения машины. Счетчик моточасов предназначен для измерения общей продолжительности работы двигателя.

Устройство и работу электрооборудования и приборов подробно изучают в специальных курсах по теории и эксплуатации ТС; схемы электрооборудования приводятся в техническом описании и инструкции по эксплуатации конкретной машины.

В настоящее время автотранспортная техника создается с применением электронных систем, заменяющих традиционные узлы электрооборудования: регуляторы напряжения, приборы подогрева ДВС, управления световой и звуковой сигнализацией, тахометры, спидометры и др. Электроника служит для контроля эксплуатационных параметров машин (расход топлива, режим работы ДВС, включения коробок передач и т.д.) и диагностики их технического состояния. Электронные устройства широко используются также для управления агрегатами трансмиссии, тормозными системами и т.д. Командная электромагнитная или электромеханическая аппаратура в электронных системах управляет исполнительными механизмами с гидро- или пневмоприводом. Широко внедряются различные микропроцессорные системы (ЭВМ), например, для автоматического управления переключением передач.

На рисунке представлена схема автоматизации управления трансмиссией автомобиля с межосевым фрикционным дифференциалом, задним активным дифференциалом и антиблокировочной системой (АБС). Эти устройства имеют общую гидравлическую систему и управляются одним компьютером, который в процессе движения автомобиля вычисляет оптимальный коэффициент блокировки и необходимую интенсивность перераспределения вращающего момента между колесами.

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 оценок, среднее: 5,00 из 5)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *