Каталитическая нейтрализация отработавших газов

Каталитическая нейтрализация отработавших газов

Каталитическое действие нейтрализаторов основано на беспламенном поверхностном окислении токсичных веществ в присутствии катализатора, ускоряющего химическую реакцию. Процесс окисления происходит во время прохождения отработавших газов через слой носителя с нанесенным на него катализатором, причем скорость реакции сгорания зависит oт температуры носителя. Применение каталитических нейтрализаторов позволяет дожигать продукты неполного сгорания СН и СО и разлагать оксиды азота.

В качестве активных компонентов каталитических нейтрализаторов для СИ и СО применяют благородные металлы (до 1-2 г палладия, платины) а также оксиды переходных металлов (меди, кобальта, никеля, ванадия, хромата железа, марганца). Для нейтрализации могут применяться, кроме выше названных элементов, катализаторы на основе меди с добавкой ванадиевого ангидрида и оксида хрома, на основе оксида железа или алюминия, на основе металлических сплавов (нержавеющая сталь, бронза, латунь, легированные стали с хромоникелем).

Общая схема системы очистки отработавших газов бензинового двигателя показана на рисунке:

Общая схема системы очистки отработавших газов бензинового двигателя

Рис. Общая схема системы очистки отработавших газов бензинового двигателя

В систему очистки отработавших газов современного двигателя входят:

  • трехкомпонентный каталитический нейтрализатор 1
  • входной 2 и выходной 9 датчики кислорода (лямда зонды)
  • блок управления двигателем 3
  • кабель шины CAN 4
  • блок управления датчиком NOx 5
  • датчик (датчики) оксидов азота NOx 6
  • накопительный нейтрализатор NOx 7
  • датчик температуры 8
  • датчик кислорода 9
  • двигатель 10

Каталитический нейтрализатор представляет собой металлический корпус 6 из жаропрочной нержавеющей стали толщиной около 1,5 мм, внутри которого находится керамический носитель 5. Наибольшее распространение получили гранулированные и блочные (монолитные) носители, которые пронизаны многочисленными мелкими сотами, созда­ющими максимальную поверхность контакта с отработавшими газами. Чтобы обеспечить необходимый массоперенос между отработавшими газами и каталитической поверхностью, площадь последней увеличивают путем нанесения на нее гамма-оксида алюминия с пористой структурой, в виде сферических гранул, которые укладываются в металлический цилиндр 2, закрытый по торцам сетками. Гранулы из оксида алюминия покрываются непосредственно каталитическим материалом. Поверх фольги или гранул алюминия нанесен тонкий слой катализаторов – платины и родия. Задача этих редких металлов – ускорять окисление углеводородов и окиси углерода до угле­кислого газа, а токсичные оксиды азота восстанавливать до азота. Между блоком-носителем и корпусом ставится специальная терморасширяющаяся прокладка.

Каталитический трехкомпонентный нейтрализатор отработавших газов

Рис. Каталитический трехкомпонентный нейтрализатор отработавших газов:
1 – кислородный датчик; 2 –цилиндр; 3 – терморасширительная прокладка; 4 – катализатор; 5 – керамический носитель; 6 – металлический корпус

Недостатком нейтрализаторов является их достаточно большая стоимость из-за применения дорогостоящих редких металлов. В целях их экономии в конструкции нейтрализаторов начали применять нано технологии. Исследования фирмы «Мазда» показали, что частицы редких металлов крупнее 10 нм, напыленные на керамическую основу, дер­жатся на ней не слишком проч­но. При нагреве они начинают скользить по поверхности керамических зерен и сливаются, подобно капелькам ртути в агломераты все боль­ших размеров. При этом неиз­бежно уменьшается площадь поверхности, контактирующая с газами, и эффективность их обезвреживания падает. Однако, если уменьшить размер частиц металла до 5 нм и менее, они прочно застревают в нанопорах керамики и уже не могут срываются. Кроме того, применяя наночастицы пла­тины, удалось уменьшить ее общее количество в нейтрали­заторе на 70…90%.

Альтернативой керамическому моно­литному блоку является металлический каталитический нейтрализатор. Он из­готавливается из гофрированной ме­таллической фольги толщиной 0,05 мм, намотка и пайка которой твердым при­поем осуществляется при высокой тем­пературе. Поверхность фольги покры­вается эффективно действующим ката­лизатором. Благодаря тонким стенкам фольги в тех же габаритах, что и у кера­мического нейтрализатора, может быть размещено большее число каналов. Это приводит к меньшему сопротивлению прохождения отработавших газов.

Нейтрализатор вступает в работу после разогрева до 300°С. Оптимальный рабочий диапазон температур от 400 до 800°С. Чем ближе нейтрализатор к двигателю, тем быстрее разогревается до рабочей темпе­ратуры. Поэтому на смену нейтрализаторам под днищем кузова пришли нейтрализаторы, совмещен­ные с приемной трубой.

В целях уменьшения вибрационных нагрузок со стороны двигателя нейтрализатор присоединяется к выпускному трубопроводу или к приемной трубе через шарнирное соединение или через компенсатор колебаний.

Для работы системы с каталитическим окислительным нейтрализатором при использовании в двигателе обогащенных смесей необходимо к отработавшим газам добавлять воздух. Для этого используются специальные воздушные насосы ими специальные клапанные устройства (виброклапаны или пульсаторы), функционирующие под действием волн разрежения, возникающих в системе выпуска.

Наилучшую очистку отработавших газов дают двухсекционные катали­тические нейтрализаторы, позволяющие после прохождения первой секции уменьшать содержание NOx, а после ввода во вторую секцию дополнительного воздуха – содержание СО и СН.

В последнее время наибольшее распространение нашли трехкомпонентные каталитические нейтрализаторы, оборудованные системой обратной связи, позволяющие одновременно при восстановлении NOx окис­лять СО и СН.

Поделиться

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *