Классификация и виды подвесок
СОДЕРЖАНИЕ:
Подвески транспортных средств классифицируются по типам направляющих устройств, упругих элементов и гасящих устройств (амортизаторов).
По типу направляющих устройств
По типу направляющих устройств различают подвески:
- зависимые
- независимые
- балансирные
В зависимой подвеске с поперечной связью колеса двух бортов одного моста связаны жесткой балкой (см. рис. а). В этом случае вертикальное перемещение одного колеса относительно несущей системы вызывает изменение наклона плоскости качения другого колеса.
В независимой подвеске каждое колесо (каток) перемещается относительно несущей системы независимо от другого. На рисунке б показана независимая однорычажная подвеска с поперечным расположением рычага. Такое направляющее устройство обеспечивает перемещение колеса в поперечной плоскости с изменением угла его наклона и колеи ТС. В зависимости от конструктивного исполнения независимые подвески могут быть однорычажные с продольным расположением рычага (рисунок а) и двухрычажные с поперечными расположением рычагов (рисунок б).
Однорычажные подвески с продольным рычагом полностью исключают изменение угла наклона колеса и колеи ТС, а двухрычажные обеспечивают минимальные их изменения при правильном выборе соотношения длин рычагов и углов их установки.
В балансирных подвесках (в зависимых подвесках с продольной связью) колеса (катки) одного борта ТС соединены друг с другом качающимися балансирами, роль которых могут выполнять листовые рессоры или жесткие балки (рис. а, б). В таких подвесках даже при отсутствии упругого элемента вертикальное перемещение одного из колес вызывает вдвое меньшие перемещения оси качания балансира, закрепленного на несущей системе ТС, что улучшает плавность хода машины. Балансирные подвески за счет качания балансира обеспечивают перераспределение нагрузки, действующей на колеса, что существенно уменьшает воздействие неровностей дороги на ТС в целом.
Рис. Схемы независимых подвесок:
а — однорычажных с продольным расположением рычага; б — двухрьдчажных с поперечным располржением рычагов
По типу упругих элементов
По типу упругих элементов различают подвески с упругими элементами:
- металлическими
- неметаллическими
В качестве металлических упругих элементов используются листовые рессоры, спиральные пружины (цилиндрические или конические) и торсионы. К неметаллическим упругим элементам относятся пневматические и резиновые упругие элементы.
Листовая рессора состоит из нескольких стальных листов (чаще всего 6 — 14), имеющих разную длину и кривизну и, как правило, прямоугольное сечение, Длина листов подбирается из условия приближения формы рессоры к форме балки равного сопротивления изгибу, которая при данном виде нагрузки является наименее жесткой.
Рис. Схемы балансирных подвесок:
а — с упругим балансиром в виде листовой рессоры; б — с жестким балансиром; АВ, DC — соответственно реактивная и толкающая штанги
При изготовлении листовых рессор листам придают различную кривизну, поэтому при сборке их подвергают предварительным деформациям, знак которых противоположен знаку рабочих деформаций. Это обеспечивает некоторую разгрузку листов рессоры. Листы собирают в пакет с помощью хомутиков, некоторые рессоры стягивают центральным болтом и затем устанавливают между мостом и несущей системой машины. Листовые рессоры обычно имеют полуэллиптическиую форму.
Если листовая рессора используется в зависимой подвеске с поперечной связью, ее среднюю часть с помощью стремянок крепят к балке моста, а концы — шарнирно (с помощью специальных кронштейнов) к несущей системе машины. Передний конец рессоры крепится к кронштейну рамы неподвижно с помощью пальца, а задний конец имеет скользящее соединение во вкладышах кронштейна. В ряде случаев концы рессор соединяют с несущей системой при помощи резиновых подушек, закрепленных в кронштейнах, обеспечивая таким образом неподвижное соединение переднего конца и скользящее соединение заднего конца рессоры. В данной конструкции подвески рессора выполняет одновременно роль упругого элемента и направляющего устройства, т.е. через нее от движителя передаются на несущую систему силы, действующие в горизонтальной плоскости, и моменты от них.
Если рессора используется в балансирной подвеске, ее середина прикрепляется стремянками к ступице, установленной на опоре рамы, являющейся осью качания балансира. Концы рессор опираются на кронштейны — опоры мостов. Конструкция кронштейнов обеспечивает скольжение концов рессоры в продольном направлении и жесткую связь с мостом в поперечном направлении.
Связь в продольном направлении, а также передача реактивных моментов осуществляются с помощью толкающих и реактивных штанг, связывающих балки мостов с несущей системой. С целью обеспечения свободного перемещения балок мостов в вертикальном направлении и допущения некоторых перекосов концы штанг соединяют с мостами и рамой шаровыми шарнирами. Для того чтобы усилия, действующие от реактивных моментов вдоль реактивных штанг, не достигали больших значений, точки крепления концов этих штанг к балкам мостов выносят возможно выше от оси вращения колес посредством установки на балках мостов специальных кронштейнов.
При работе листовых рессор возникает относительное перемещение листов в продольном направлении и создается межлистовое трение, которое, с одной стороны, способствует гашению колебаний, а с другой — неблагоприятно сказывается на плавности хода ТС вследствие блокировки подвески при больших силах трения. Для уменьшения трения листы рессоры при сборке смазывают графитной смазкой или используют неметаллические антифрикционные прокладки между листами. Снижение силы трения достигается также уменьшением числа листов в рессоре и применением рессоры, состоящей из одного листа, с переменным сечением по его длине. Применение одно- или малолистовых рессор позволяет снизить расход металла, что, в свою очередь, уменьшает массу подвески.
Спиральные пружины в качестве основных упругих элементов обычно устанавливают на легковых автомобилях в независимых рычажных подвесках. В ТС большой грузоподъемности пружины используют в качестве вспомогательных упругих эле-ментов, например в качестве ограничителей хода торсионных подвесок гусеничных машин. Чаще всего применяются цилиндрические и конические пружины круглого или прямоугольного сечений.
Торсионные упругие элементы, или просто торсионы, представляют собой стержни различного поперечного сечения из высококачественной стали, работающие на кручение. Они используются в независимых подвесках и в отличие от листовых рессор требуют направляющих устройств. На концах торсионов обычно имеются головки со шлицами. Один конец торсиона закреплен в специальном кронштейне на несущей системе машины, а другой связан через рычаг направляющего устройства с колесом (катком). При перемещении колеса в вертикальном направлении торсион закручивается на угол до 30… 45°, тем самым обеспечивая упругость подвески.
По расположению на ТС различают торсионы:
- продольные
- поперечные
В пневматических подвесках в качестве упругого элемента используется сжатый воздух или азот, заключенный в жесткую или упругую оболочку. При перемещении колеса относительно несущей системы происходит изменение объема газа. Характер этого изменения определяет упругую характеристику подвески.
Пневматические упругие элементы, в которых газ заключен в упругую оболочку, представляют собой резинокордные оболочки, уплотненные по торцам и заполненные воздухом под давлением. В ТС используются три типа этих элементов: пневмобаллоны, рукавные и диафрагменные упругие элементы.
Пневмобаллоны изготавливают одно-, двух- и трехсекционными. Двухсекционный пневмобаллон (рис. а) состоит из оболочки 1 толщиной 3… 5 мм, усиленной стальными проволочными кольцами 2 для крепления к опорным фланцам 4 с помощью колец 3. В средней части оболочка стянута кольцом 5.
Рис. Пневматические упругие элементы с газом, заключенным в упругую оболочку:
а — двухсекционный пневмобаллон; б — элемент рукавного типа; в — принципиальная схема регулирования положения кузова
Герметизация оболочки рукавного упругого элемента (рис. б) осуществляется с помощью прижимных фланцев 6 или под давлением воздуха.
Диафрагменный упругий элемент отличается от рукавного наличием жесткой боковой оболочки. Нижняя торцевая часть его оболочки представляет собой упругую диафрагму. Кордная ткань оболочки изготавливается из полиамидных нитей (нейлон, капрон).
Пневматические упругие элементы с газом, заключенным в жесткую оболочку, подразделяются на три типа: с одной ступенью давления (рис. а), когда сжатый газ расположен над поршнем 1 в одном объеме (камера А); с противодавлением (рис. б), когда газ находится как в надпоршневом пространстве (камера А), так и под поршнем 1 (камера Б), причем давление газа больше в камере А; с двумя ступенями давления (рис. в), когда две камеры А и В расположены над поршнем 7. В последнем случае давление зарядки газовых камер различно. В камере А газ сжимается в течение всего хода подвески, а в камере В газ начинает сжиматься по достижении давления большего, чем зарядное давление этой камеры.
Передача усилий от поршня к газу осуществляется через жидкость, которой заполнен цилиндр. В ряде случаев жидкость находится в непосредственном контакте с газом (камера Б на рис. б), но чаще всего она отделена от газа гибким разделителем (диафрагмой) 3 или плавающим поршнем 13, изображенным на рисунке.
При непосредственном контакте жидкости с газом в ходе работы подвески происходит ее вспенивание, что отрицательно сказывается на характеристике упругого элемента.
Рис. Схемы пневматических упругих элементов с газом, заключенных в жесткую оболочку, с одой ступенью давления (а), с противодавлением (б) и с двумя ступенями давления (в)
Применение жидкости в таких упругих элементах обеспечивает демпфирование колебаний масс ТС при перетекании ее через калиброванные отверстия и клапаны 2. Таким образом, получается агрегат, в котором размещены и упругий элемент, и, амортизатор.
На рисунке показано устройство пневматического упругого элемента с одной ступенью давления, не обладающего демпфирующими свойствами, но имеющего дополнительные резиновые упругие элементы 7. Заправка газом и жидкостью осуществляется соответственно через клапаны 19 и 27. Упругие элементы работают в начале и конце хода подвески. Газ отделен от жидкости плавающим поршнем 13. Упругий элемент через серьгу 1 и подшипник 2 одним концом крепится к направляющему устройству подвески, а другим — к несущей системе машины.
Применение пневматических упругих элементов позволяет регулировать положение кузова и дорожный просвет, а также изменять упругую характеристику подвески.
Принципиальная схема регулирования высоты кузова ТС по массе газа в упругом элементе показана на рисунке в. При возрастаний нагрузки кузов машины опускается, и расстояние между ним и мостом уменьшается. Рычажный привод, воздействуя на регулятор 8, обеспечивает сообщение упругого элемента 7 с ресивером. Воздух под давлением поступает в упругий элемент до тех пор, пока кузов не поднимется до прежнего уровня. При уменьшении нагрузки расстояние между кузовом и мостом также останется неизменным, так как с помощью регулятора 8 воздух выпускается из упругого элемента 7 в атмосферу. Использование гидравлического замедлителя, встроенного в регулятор, исключает работу регулятора при колебаниях ТС на подвеске.
Регулирование высоты кузова может осуществляться за счет изменения объема жидкости, находящейся между газом и поршнем. В этих системах для поднятия кузова ТС жидкость нагнетается в упругий элемент, а для опускания удаляется.
На ряде ТС имеется система регулирования положения кузова, с помощью которой можно не только изменять дорожный просвет всей машины, но и придавать кузову дифферент на нос или корму либо крен на борт за счет выбора параметров соответствующих подвесок.
Резиновые упругие элементы применяют в подвесках ТС в качестве ограничителей хода подвески и в узлах крепления амортизаторов, снижая динамическую нагруженность деталей подвески и несущей системы.
В качестве гасящих устройств в ТС используют гидравлические амортизаторы, в которых механическая энергия колебаний ТС преобразуется в тепловую путем жидкостного трения при прохождении вязкой жидкости через отверстия малого сечения. Жидкость нагревается, и теплота рассеивается э окружающем пространстве.
Конструктивно гидравлические амортизаторы исполняют телескопическими и рычажными. Телескопические работают при давлении жидкости до 8 МПа, а рычажные — до 30 МПа. Телескопические амортизаторы подразделяются на двухтрубные и однотрубные. Рычажные могут быть поршневыми и лопастными.
Рис. Пневматический упругий элемент с дополнительными упругими элементами:
1 — серьга; 2 — шарнирный подшипник; 3, 15, 17 — уплотнения; 4, 8 — стаканы; 5 — чехол; 6, 11, 14 — шайбы; 7 — дополнительные упругие элементы; 9 — поршень; 10 — цилиндр; 12 — манжета; 13 — плавающий поршень; 16 — крышка; 18 — втулка; 19, 21 — зарядные клапаны; 20 — перепускной клапан
В качестве рабочих жидкостей для амортизаторов применяют минеральные масла.
При работе амортизатора различают ход сжатия и ход отбоя. При ходе сжатия колесо (каток; приближается к несущей системе ТС, а при ходе отбоя, наоборот, отдаляется от нее.
Устройство и принцип действия гидравлического телескопического двухтрубного амортизатора двустороннего действия
Рассмотрим устройство и принцип действия гидравлического телескопического двухтрубного амортизатора двустороннего действия. Амортизатор проушиной 6 крепится к несущей системе машины, а проушиной 1 — к направляющему устройству. Амортизатор состоит из штока 5, на нижнем конце которого укреплен поршень 8 с клапанами и калиброванными по сечению каналами. Поршень расположен внутри рабочего цилиндра 12, который заключен в наружную трубу 13 и скреплен с ней. Между наружной полостью цилиндра и внутренней поверхностью трубы имеется зазор, образующий компенсационную камеру 3 амортизатора. В верхней части цилиндра расположено уплотнение, через которое про-ходит шток. Нижняя часть цилиндра соединяется с компенсационной камерой клапанами и калиброванными каналами.
В поршне расположены калиброванные отверстия 4 хода отбоя, перепускной клапан 7 сжатия и разгрузочный клапан 9 отбоя.
В нижней части цилиндра находятся перепускной клапан 10 отбоя, калиброванный канал 2 сжатия и разгрузочный клапан 11 сжатия. При ходе сжатия, когда щток вдвигается в цилиндр, давление под поршнем повышается, и жидкость перетекает через отверстие 4 и клапан 7 в пространство над поршнем. Вследствие того что объемы полостей под поршнем и над ним неодинаковы (часть объема над поршнем занимает шток), избыток жидкости перетекает через канал 2 в компенсационную камеру, сжимая имеющийся там воздух. При большой скорости перемещения поршня в цилиндре давление под ним поднимается настолько, что сжимает пружину разгрузочного клапана 11, который открывается, и нарастание давления уменьшается, что ограничивает силу сопротивления амортизатора на ходе сжатия. При ходе отбоя, когда поршень выдвигается из цилиндра, давление над поршнем увеличивается и жидкость через калиброванные отверстия 4 перетекает в пространство над поршнем. Дефицит жидкости под поршнем будет покрываться перетеканием ее из компенсационной камеры в цилиндр через клапаны 10 и канал 2. При большой скорости движения поршня на ходе отбоя давление над поршнем возрастает, что вызывает открытие разгрузочного клапана 9 отбоя в поршне и тем самым ограничивает силу сопротивления амортизатора на ходе отбоя.
Рис. Схема гидравлического телескопического двухтрубного амортизатора двустороннего действия
Нормальным условием работы амортизатора является отсутствие в жидкости воздушных включений. В рассмотренном амортизаторе воздушное включение может возникнуть вследствие взбалтывания жидкости в компенсационной камере, где жидкость контактирует с воздухом.
Такого недостатка не имеет гидравлический телескопический однотрубный амортизатор двустороннего действия, у которого два клапана (отбоя 3 и сжатия 2) расположены в поршне, а роль компенсационной камеры выполняет полость А, отделенная от подпоршневого пространства плавающим поршнем 7. В полости А находится сжатый газ, объем которого при ходе сжатия уменьшается, а при ходе отбоя увеличивается.
В рычажных амортизаторах рычаг одним концом связан с направляющим устройством подвески, а другим — с поршнем или лопастью. При перемещении последних внутри корпуса амортизатора жидкость из одной полости перетекает в другую через клапаны и отверстия, сечения которых определяют характеристики отбоя и сжатия.
Наряду с рассмотренными амортизаторами существуют такие, в конструкции которых имеется возможность регулирования параметров, определяющих их демпфирующие свойства, за счет изменения суммарной площади отверстий, через которые перетекает рабочая жидкость. Регулирование осуществляется при изменении массы машины или интенсивности колебаний. С увеличением значений этих параметров сопротивление амортизаторов увеличивается.
Рис. Схема гидравлического телескопического однотрубного амортизатора двустороннего действия
Добавить комментарий