Устройство рулевого механизма

В состав рулевого механизма входит рулевое колесо, вал, заключенный в рулевую колонку, и рулевой редуктор, связанный с рулевым приводом. Рулевой механизм позволяет уменьшить усилие, прикладываемое водителем к рулевому колесу для преодоления сопротивления, возникающего при повороте управляемых колес машины вследствие трения между шинами и дорогой, а также деформации грунта при движении по грунтовым дорогам.

Рулевой редуктор представляет собой механическую передачу (например, зубчатую), установленную в корпусе (картере) и имеющую передаточное число 15 — 30. Рулевой механизм уменьшает усилие, прикладываемое водителем к рулевому колесу, связанному посредством вала с редуктором, во столько раз. Чем больше передаточное отношение рулевого редуктора, тем легче водителю поворачивать управляемые колеса. Однако с увеличением передаточного числа рулевого редуктора для поворота на некоторый угол управляемого колеса, связанного через детали привода с выходным валом редуктора, водителю необходимо повернуть рулевое колесо на больший угол, чем при малом передаточном числе. При движении ТС с высокой скоростью труднее совершать резкий поворот под большим углом, поскольку водитель не успевает поворачивать рулевое колесо.

Передаточное отношение рулевого редуктора:

Up = (ap/ac) = (pc/pp)
где ар и ас — углы поворота соответственно рулевого колеса и выходного вала редуктора; Рр, Рс — усилие, приложенное водителем к рулевому колесу, и усилие на выходном звене рулевого механизма (сошке).

Так, для поворота сошки на 25° при передаточном отношении рулевого редуктора, равном 30, рулевое колесо необходимо повернуть на 750°, а при Up = 15 — на 375°. При усилии на рулевом колесе 200 Н и передаточном отношении Up = 30 водитель на выходном звене редуктора создает усилие 6 кН, а при Up = 15 — в 2 раза меньше. Целесообразно иметь переменное передаточное отношение рулевого механизма.

При малых углах поворота рулевого колеса (не более 120°) предпочтительно большое передаточное отношение, обеспечивающее легкое и точное управление автомобилем при движении с высокой скоростью. При низких скоростях малое передаточное отношение позволяет при небольших углах поворота рулевого колеса получать значительные углы поворота управляемых колес, что обеспечивает высокую маневренность автомобиля.

Выбирая передаточное отношение рулевого механизма, исходят из того, что управляемые колеса должны поворачиваться из нейтрального положения на максимальный угол (35…45°) не более чем за 2,5 оборота рулевого колеса.

Рулевые механизмы могут быть нескольких типов. Наиболее распространенными из них являются «червяк—трехгребневый ролик», «червяк—шестерня» и «винт—шариковая гайка-рейка—шестерня». Шестерня в рулевом механизме выполнена в виде сектора.

Рулевой механизм преобразует вращательное движение рулевого колеса в угловое перемещение рулевой сошки, установленной на выходном валу рулевого редуктора. Рулевой механизм при движении полностью груженого автомобиля, как правило, должен обеспечивать усилие на ободе рулевого колеса не более 150 Н.

Угол свободного поворота рулевого колеса (люфт) для грузовых автомобилей обычно не должен превышать 25° (что соответствует длине душ 120 мм, измеренной по ободу рулевого колеса) при движении грузового автомобиля по прямой. Для автомобилей других типов люфт рулевого колеса иной. Люфт возникает из-за износа в эксплуатации деталей рулевого управления и разрегулировки рулевого механизма и привода. Для уменьшения потерь на трение и защиты деталей рулевого редуктора от коррозии в его картер, укрепленный на раме машины, заливают специальное трансмиссионное масло.

При эксплуатации ТС необходимо регулировать рулевой механизм. Регулировочные устройства рулевых редукторов предназначены для устранения, во-первых, осевого люфта рулевого вала или ведущего элемента редуктора, а во-вторых — люфта между ведущим и ведомым элементами.

Рассмотрим конструкцию рулевого механизма типа «глобоидальный червяк— трехгребневый ролик».
Рулевой механизм типа «глобоидальный червяк—трехгребневый ролик»

Рис. Рулевой механизм типа «глобоидальный червяк—трехгребневый ролик»:
1 — картер рулевого редуктора; 2 — головка вала рулевой сошки; 3 — трехгребневый ролик; 4 — регулировочные прокладки; 5 — червяк; 6 — рулевой вал; 7 — ось; 8 — подшипник вала сошки; 9 — стопорная шайба; 10 — колпачковая гайка; 11 — регулировочный винт; 12 — вал сошки; 13 — сальник; 14 — рулевая сошка; 15 — гайка; 16 — бронзовая втулка; h — регулируемая глубина зацепления ролика с червяком

Глобоидальный червяк 5 установлен в картере 1 рулевого редуктора на двух конических роликовых подшипниках, хорошо воспринимающих осевые усилия, возникающие при взаимодействии червяка с трехгребневым роликом 3. Червяк, напрессованный на шлицы, имеющиеся на конце рулевого вала 6, обеспечивает при ограниченной длине хорошее зацепление гребней ролика с нарезкой червяка. Благодаря тому что действие нагрузки рассредоточено по нескольким гребням в результате их контакта с червяком, а также замене трения скольжения в зацеплении значительно меньшим трением качения достигается высокая износостойкость механизма и достаточно большой КПД.

Ось ролика закреплена в головке 2 вала 12 рулевой сошки 14, а сам ролик установлен на игольчатых подшипниках, уменьшающих потери при прокрутке ролика относительно оси 7. Опорами вала рулевой сошки являются, с одной стороны, роликовый подшипник, а с другой — бронзовая втулка 76. Сошка соединена с валом при помощи мелких шлицов и закреплена шайбой и гайкой 15. Для уплотнения вала сошки применяется сальник 13.

Зацепление червяка с гребнями осуществляется таким образом, что при положении, соответствующем прямолинейному движению машины, свободный ход рулевого колеса практически отсутствует, а по мере увеличения угла поворота рулевого колеса он возрастает.

Регулировка затяжки подшипников рулевого вала осуществляется с помощью изменения числа прокладок устанавливаемых под крышку картера, своей плоскостью упирающуюся в торец крайнего конического роликового подшипника. Регулировку зацепления червяка с роликом осуществляют смещением вала рулевой сошки в осевом направлении с помощью регулировочного винта 11. Этот винт установлен в боковой крышке картера, снаружи закрыт колпачковой гайкой 10 и зафиксирован стопорной шайбой 9.

На автомобилях большой грузоподъемности применяются рулевые механизмы типа «червяк—боковой сектор (шестерня)» или «винт—шариковая гайка—рейка—шестерня», имеющие большую площадь контакта элементов и как следствие малые давления между поверхностями рабочих пар редуктора.

Рулевой механизм типа «червяк—боковой сектор», наиболее простой по конструкции, используется на некоторых автомобилях. В зацепление с червяком 2 входит боковой сектор 3 в виде части шестерни со спиральными зубьями. Боковой сектор выполнен как единое целое с валом 1 сошки. Сошка расположена на валу, установленном на игольчатых подшипниках.

Зазор в зацеплении между червяком и сектором непостоянен. Наименьший зазор соответствует среднему положению рулевого колеса. Зазор в зацеплении регулируется изменением толщины шайбы, расположенной между боковой поверхностью сектора и крышкой картера рулевого редуктора.

Конструкция рулевого механизма типа «винт—шариковая гайка—рейка—сектор» показана на рисунке. Вал рулевого колеса посредством карданной передачи соединен с винтом 4, взаимодействующим с шариковой гайкой 5, неподвижно закрепленной стопорным винтом 15 в поршне-рейке 3. Резьба винта и гайки выполнена в виде полукруглых канавок, заполняемых шариками 7, циркулирующими по резьбе при вращении винта. Крайние нитки гайки соединены желобом 6 с наружной трубкой, обеспечивающей циркуляцию шариков. Трение качения этих шариков по резьбе во время вращения винта незначительно, что обусловливает высокий КПД такого механизма.

Рулевой механизм типа «червяк—боковой сектор»

Рис. Рулевой механизм типа «червяк—боковой сектор»:
1 — вал сошки; 2 — червяк; 3 — боковой сектор

Рулевой механизм типа «винт—шариковая гайка—рейка—сектор»

Рис. Рулевой механизм типа «винт—шариковая гайка—рейка—сектор»:
1 — крышка цилиндра; 2 — картер; 3 — поршень-рейка; 4 — винт; 5 — шариковая гайка; 6 — желоб; 7 — шарики; 8 — промежуточная крышка; 9 — золотник; 10 — корпус клапана управления; 11 — гайка; 12 — верхняя крышка; 13 — пружина плунжера; 14 — плунжер; 15 — стопорный винт; 16 — зубчатый сектор (шестерня); 17 — вал; 18— сошка; 19 — боковая крышка; 20 — стопорное кольцо; 21 — регулировочный винт; 22 — шаровой палец

При повороте автомобиля водитель с помощью рулевого колеса и вала вращает винт, относительно оси которого на циркулирующих шариках перемещается шариковая гайка. Вместе с гайкой перемещается и поршень-рейка, поворачивая зубчатый сектор (шестерню) 16, выполненный как единое целое с валом 17. Сошка 18 установлена на валу с помощью шлицов, а сам вал размещен на бронзовых втулках в картере 2 рулевого редуктора.

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (оцени первым)
Особенности устройства рулевого управления отечественных автомобилей На автомобилях ГАЗ-69 и ГАЗ-69А устанавливаются одинаковые и полностью взаимозаменяемые рулевые управления. Рулевая сошка 13 устанавливается на шлицах вала 12 и закрепляется гайкой со стопорной шайбой. Рулевой вал 4 помещен внутри рулевой колонки 5, которая нижним концом надевается на выступ карт...
Усилители рулевого управления Для уменьшения усилия, прикладываемого водителем к рулевому колесу при повороте автомобиля, применяются усилители. Они выполняют следующие функции: обеспечивают кинематическое следящее действие, т. е. пропорциональность между углами поворота управляемых колес ТС и рулевого колеса; создают си...
Схема рулевого привода с независимой подвеской колёс   Рис. Схема рулевого привода с независимой подвеской колёс: 1 - поперечная рулевая тяга; 2 — продольная рулевая тяга; 3 - нижний рычаг; 4 — рулевая сошка; 5 — промежуточный рычаг рулевого привода; 6 - рычаг поворотного кулака; 7 — стойка передней подвески колеса; 8 — нижний рычаг....
✪Устройство автомобиля Авто⚡сайт №❶
Google+ ()