Всё для ремонта авто

Меню

Метка: Углепластик

Углепластик (карбон) в авто – поиск альтернатив

Уникальный композитный материал — углепластик пока используется в основном в спортивном автомобилестроении для суперкаров и болидов, потому что массовое использование сдерживается высокой ценой и эксплуатационными характеристиками карбона. Основным материалом для изготовления корпусов автомобилей остается тонколистовая сталь. В последнее десятилетие все активнее используются альтернативные материалы, а именно — инженерные армированные пластики с особыми свойствами и алюминий. Они легко формуются, окрашиваются, ремонтируются, то есть технологичны.

При упоминании слова «карбон», сразу же представляются эксклюзивные капоты, ведь это одна из самых заметных и распространенных автомобильных деталей. Но оклейка карбоном авто обычно ограничивается спойлерами, бамперами, обвесами и отделкой зеркал. Для внутреннего тюнинга карбон применяют для ручек переключателя коробки передач, декора панели или вставки на руле.

Почему отделка авто карбоном популярна

Углепластик, он же карбон:

  • очень эстетичен, прочен и применяется чаще как укрепляющее дополнение к традиционным материалам,
  • роскошный внешний вид при отделке авто добавляет ему эксклюзивности, поэтому пленки карбон пользуются стабильным спросом,
  • отлично противостоит скручивающим нагрузкам и не подвержен коррозии,
  • использование карбона снижает массу авто и повышает топливную эффективность, ведь он вполовину легкче стали и на 20% легче алюминия.

Основными составляющими этого композитного материала являются углеродные волокна и полимерные смолы. Перерабатывается он формованием и дорогостоящим, трудоемким является именно процесс получения углеродного волокна с особыми свойствами.

Почему не делают массовые автомобили из углепластика

Эксперты  выделают 5 основных параметров, ограничивающих широкое использование углеплластика, кроме его высокой цены:

  1. Этот дорогой материал тяжело ремонтировать при повреждении. Его нельзя заварить, отрихтовать, наплавить. И поврежденную деталь из карбона приходится просто менять.
  2. Карбон плохо противостоит точечным ударам, его поверхность легко царапается и желтеет под воздействием солнечных лучей.
  3. В технологичности он проигрывает стали и инженерным пластикам. Опасность представляют микротрещины, снижающие прочность.
  4. И еще не стоит забывать об экологической составляющей. Процессы утилизации автомобилей во всем мире уже отлажены, а вот композитные материалы практически не перерабатываются вторично. И повторно их использовать нельзя, что делает углепластик еще дороже.

Для того чтобы изделие из карбона служило долго, сохраняя свою эстетику, необходим точный расчет многих параметров и правильный выбор материалов — углеполотна и эпоксидной смолы.

Возможность применения его в серийном автомобилестроении очень спорна. Разве что для тюнинга, но не при изготовлении несущих элементов. Обтянутое карбоном авто смотрится роскошно. Но очень может быть, что этот суперсовременный материал так и не попадет в массовое производство, ведь альтернативные инженерные пластики с армированием не такие капризные и дорогостоящие.

Углепластик будут продолжать использовать для суперкаров и гоночных автомобилей, благодаря его уникальным качествам. Тем не менее, пройдет еще немало лет, пока мы увидим его использование на серийных автомобилях. В то же время, технологии не стоят на месте, и возможно, скоро углепластик будет выглядеть как архаизм, так и не попадя в массовое производство. Использование карбона в конструкции машины существенно увеличивает ее стоимость. Почему его стоимость так высока, мы уже разбирались тут.

А пока производители материалов для тюнинга авто предлагают доступные альтернативы:

  • это специальная виниловая пленка «под карбон», которая плотно обтягивает любую деталь, термоусаживается под воздействием теплого воздуха,
  • аквапечать с помощью пленки всех цветов и с любым рисунком под напором воды,
  • аэрография, которая требует высоких художественных навыков мастера, зато рисунок получается эксклюзивным.

Как снизить стоимость карбона

Основной путь — снижение себестоимости получения углеволокна за счет максимальной автоматизации процессов и снижения их продолжительности. Поэтому идут поиски материала для получения углеволокна из углеродосодержащего сырья. Основная цель — сделать массовый продукт, доступный по цене.

Поиски альтернативных смол и полимеров для матрицы способны снизить стоимость карбона, но не на много. Основным преимуществом альтернатив должно стать повышение ремонтопригодности. Автомобильные гиганты выделяют огромные средства на разработки, поэтому ждать осталось недолго.

Виды полотна углепластика (карбона)

Полотно определяет не только внешний вид получившегося карбона, но и его прочностные и технологические характеристики. От плетения и плотности углеполотна зависит и то, как легко и качественно можно выложить полотно в форме при заливке смолой.

Виды плетений полотна

Полотно (Plane Weave, P) — самый плотный и прочный вид плетения, самый распространенный. Нити утка и основы переплетаются поочередно.

Елочка (Twill, T) — саржевое плетение, наиболее универсальное полотно. Нити утка и основы переплетаются через две нити.

Еще одна разновидность елочки

Сатин (Satin WEAVE, R) — наименее плотное и самое пластичное полотно. Рыхлость полотну придают особенности плетения: каждая нить утка и основы проходит на несколькими нитями утка или основы.

Реже используется корзинное плетение — Leno, Basket Weave.

Схематически виды плетения карбонового полотна представлены на рисунке.

Правила выбора углеполотна

Выбор текстиля определяется назначением, способом использования углеволокна и способом получения углепластика. Его основными характеристиками являются:

  1. Плотность, масса на единицу площади г/м.кв,
  2. Линейная плотность, количество нитей на 1 смв каждом направлении,
  3. Число К, количество тысяч элементарных нитей углерода (цепочек) в одной нити. Наиболее распространено волокно с К3. Обычно К=6-12-24-48.

Для автотюнинга чаще всего используются полотна плотностью 150-600 г/м.куб с толщиной волокон 1-12К. А для велосипедных рам К3.

Технические характеристики волокон карбона

Для углеродных волокон основными механическими характеристиками являются предел прочности на растяжение σв и предел прочности на единицу объема, а также модуль упругости, определяющий эластичность и способность работать на изгиб. Механические свойства сильно зависят от ориентации волокон, то есть они анизотропны. Технические характеристики, как правило, приводятся для продольного направления.

Углеродные волокна обладают следующими механическими характеристиками по сравнению с армирующими металлическими, стекловолокном и полимерными волокнами.

Волокно (проволока)

ρ, кг/ м³

Тпл, °C

σB, МПа

σB/ρ, МПа/кг*м-3

Алюминий

2 687

660

620

2 300

Асбест

2 493

1 521

1 380

5 500

Бериллий

1 856

1 284

1 310

7 100

Карбид бериллия

2 438

2 093

1 030

4 200

Углерод

1 413

3 700

2 760

157

Стекло E

2 548

1 316

3 450

136

Стекло S

2 493

1 650

4 820

194

Графит

1 496

3 650

2 760

184

Молибден

0 166

2 610

1 380

14

Полиамид

1 136

249

827

73

Полиэфир

1 385

248

689

49

Сталь

7 811

1 621

4 130

53

Титан

4 709

1 668

1 930

41

Вольфрам

19 252

3 410

4 270

22

Например, параметры углеродных волокон Toray из полиакрилата (PAN) c высокой прочностью на растяжение High Modulus Carbon Fiber.

Волокно (fiber) Модуль упругости (msi) Предел прочности (ksi)
M35J

50

683

M40J

57

398

M40J

55

640

M46J

63

611

M50J

69

597

M55J

78

583

M60J

85

569

Существует взаимосвязь — чем выше предел прочности, тем ниже модуль упругости.

Что определяет технические характеристики карбоновых композитов

При подборе материала очень важно найти оптимальный баланс между этими характеристиками, подбирая слои, направление волокна, метод плетения и плотность.

Механические свойства композитов определяются следующими параметрами:

  • Тип карбонового волокна и смолы,
  • Тип плетения, ориентация волокон,
  • Соотношение волокон (объем волокна) и смолы в композиции,
  • Плотность, однородность, пористость и пр.

Карбон своими руками. Выбор эпоксидной смолы и компаунда

Основными материалами для изготовления карбона являются эпоксидные компаунды и углеродное полотно.

Технология производства карбоновых изделий основана на технологических особенностях полиэфирных и эпоксидных смол, которые еще ошибочно называют компаундами. Компаундами правильнее назвать смесь смолы с отвердителем и наполнителем, потому что «компаундирование» — это смешивание.

Такие смеси — компаунды бывают холодного отверждения и горячего, что определяется видом отвердителя. Суть процесса отверждения заключается в преобразовании молекулы смолы с реакционноспособными эпоксидными группами (= С — С =) в макромолекулу при реакции с аминами, ангидридами органических кислот, фенолформальдегидными смолами, содержащимися в отвердителях. При введении отвердителей эпоксидные смолы переходят из жидко-вязкого состояния олигомеров в твердое неплавкое и нерастворимое состояние полимеров- полиэпоксидов. То есть молекулы эпоксидной смолы сшиваются и приобретают сетчатую структуру.

Теплостойкость отвержденных компаундов 150… 250 °С.

Наибольшее распространение получили компаунды холодного отверждения, как наиболее простые в использовании. Но они имеют ряд недостатков, которые приводят в дальнейшем к растрескиванию, расслаиванию, пожелтению изготовленных из них деталей автомобиля.

Это обусловлено их низкой стойкостью к воздействию ультрафиолета, высоких температур. Этого можно избежать, если покрыть поверхность лаком, краской и добавив наполнитель. Изделие получится более тяжелым, но зато и более прочным. Для изготовления карбона применяются методы с использованием всех видов компаундов, что определяется размерами детали, навыками и оснасткой.

Достоинства эпоксидных смол и компаундов

Эпоксидные смолы для карбона и компаунды на их основе являются популярным и оптимальным связующим для волокнистых армирующих материалов. И для этого у них есть широкий спектр потребительских и технологических достоинств:

  • Отличная адгезия к большинству армирующих материалов, наполнителей и подложек;
  • Большой выбор марок эпоксидных смол и отверждающих агентов с разнообразными техническими параметрами, что позволяет получить после отверждения материалы с широким спектром свойств;
  • Химическая реакция между эпоксидными смолами и отвердителями протекает без выделения воды и летучих веществ — процесс контролируем и безопасен (необходимо учитывать количество тепла в некоторых рецептурах).
  • Усадка при отверждении ниже, чем с использованием фенолформальдегидных или полиэфирных смол, и ее величину легко регулировать применением различных наполнителей;
  • Современные модификации эпоксидных смол дают возможность выбрать марку с определенной температурой, скоростью и временем отверждения, что очень важно при массовом производстве;
  • Отвержденные компаунды прекрасные диэлектрики с высоким объемным сопротивлением.
  • Они устойчивы к воздействию воды, высоких температур, кислот и щелочей.

Но изначально эпоксидные смолы применялись только в качестве универсальных клеев, заливки обмоток трансформаторов и двигателей, герметизации стыков электрических кабелей, при изготовлении моделей и форм.

При появлении углеродного полотна и с развитием композиционных материалов эпоксидные смолы нашли широкое применение при изготовлении углепластиков. Поэтому наряду с использованием эпоксидных компаундов в качестве клеев они находят применение при получении слоистых пластиков и волокнисто-намоточных композитов в электронной, химической, автомобильной промышленности и при изготовлении спортивного инвентаря.

Компаунды холодного отверждения

«Холодные» технологии требуют продолжительной подготовки оснастки и дополнительного оборудования для вакуумных процессов удаления воздуха из смеси. Этот метод трудоемок и пригоден для мелкосерийного производства деталей определенного сечения. Все компоненты необходимо тщательно перемешивать и строго дозировать.

Отверждение происходит при комнатной температуре или при нагреве до 70-80 С. Все, что выше, относится к компаундам горячего отверждения.

Компаунды горячего отверждения

Эпоксидные смолы горячего отверждения прочнее, но при комнатной температуре полимеризация идет очень медленно. Это свойство используется при изготовлении препрегов — заготовок для формования. Они представляют листы карбона, в которых смола с отвердителем в жидком виде нанесены на углеполотно, а реакция отверждения практически не идет при комнатной температуре и запускается при нагреве.

Такие заготовки могут храниться от нескольких часов до нескольких недель, в зависимости от марки смолы и назначения.

Непосредственно при изготовлении детали нагретый компаунд становится жидким и растекается, заполняя весь объем рабочей формы и процесс полимеризации ускоряется.

Каждая марка смолы имеет собственные температурные и временные режимы отверждения. Поэтому при выборе необходимо обращать внимание на эти параметры и возможности своего оборудования.

Рекомендации по выбору смолы и приготовлению компаунда

При выборе смолы целесообразно ориентироваться на размеры, условия эксплуатации готового изделия и свой опыт.

1. «Медленные» смолы применяют для крупногабаритных изделий и если работы проводятся при высоких температурах, а также при малом опыте, чтобы успеть расправить все складки ткани и аккуратно выложить пропитанную смолой углеткань до момента начала полимеризации. Необходимо помнить, что повышение температуры ускоряет полимеризацию любого компаунда. Чем выше температура в помещении, тем медленнее должна быть смола. В холодном помещении можно использовать «быстрые» смолы.

2. Если готовое изделие будет эксплуатироваться на улице, необходимо выбирать смолы с уф-фильтрами и устойчивые к высоким температурам. То есть обязательно обращать внимание на рабочие технические характеристики. Можно при универсальной смоле использовать лаки с защитными свойствами.

3. Качество затвердевшего компаунда определяется не только его техническими и потребительскими характеристиками, но и точностью дозировки и тщательностью перемешивания всех компонентов.

Потребительские характеристики готового изделия можно менять подбором отвердителей различных марок.

Попытки ускорить или замедлить время полимеризации самостоятельным изменением пропорций чреваты ухудшением характеристик готового компаунда. Увеличенная дозировка отвердителя ускорит затвердевание, но охрупчит готовое изделие, и прочность будет ниже. Если отвердителя меньше нормативного, смесь может вообще не затвердеть.

Перемешивать все компоненты смеси необходимо не меньше минуты.

4. Так как смола относится к термореактивным веществам, при полимеризации выделяется экзотермическое тепло. Проходит химическая реакция. И чем быстрее проходит реакция, тем больше выделяется тепла. Поэтому при работе необходимо соблюдать меры предосторожности: не касаться руками, не вдыхать пары, не использовать воспламеняемые материалы.

Время, пока смесь остается в жидком состоянии, называется временем жизни. Промежуток времени от жидкого состояния до твердого — время гелеобразования. Промежуток времени от полного смешивания до полного затвердевания — время полимеризации.

В стадии начального затвердевания (материал упругий, а при нажатии ногтем остается след) может наноситься  следующий слой ткани и смолы, потому что в этот момент новый слой соединяется с предыдущим в одно целое, еще идет химическая реакция. Если упустить этот момент, в дальнейшем нанесение слоев возможно только при тщательной шлифовке и полировке поверхности. Соединение будет идти уже за счет капиллярного эффекта. Иначе может происходить расслаивание.

Извлекать готовое изделие можно только после полного затвердевания. Но окончательный набор прочности будет идти еще на протяжении месяца.

Таким образом, время гелеобразования необходимо знать, чтобы рассчитать время смешивания компаунда и нанесения слоев. А время полимеризации определяет выдержку и момент извлечения изделия из матрицы. Производители предлагают отвердители различных марок, которыми можно корректировать время полимеризации.

Чтобы не ошибиться при самостоятельном подборе всех компонетов смеси, лучше приобретать смолу и отвердитель в наборах, обращая внимание на время полимеризации готовой смеси.

Зачастую производители при описании смол общего и специального назначения указывают рекомендуемый способ применения — ручное формование, намотка, напыление и область применения — для углепластиков, для стеклопластиков, автотюнинга, декоративных панелей и пр.

Наполнители для компаундов

 

Для повышения плотности и загущения смолы используются различные наполнители, после тщательного перемешивания смолы и отвердителя.

Это могут быть хлопковые волкна, рубленое стекловолокно и стеклянные сферы, рубленое и молотое углеволокно, металлическая пудра, тальк. Точной дозировки обычно не требуется и тут поле для ваших экспериментов. Густые смеси используются для заполнения зазоров и моделирования формы.

Специальные добавки

Для придания особых свойств, таких как устойчивость к ультрафиолету, к высоким и низким температурам, окрашивания применяются специальные добавки.

Излишки смолы легко удаляются ацетоном. Это пригодится. Если вы испачкали руки. Но лучше работать в перчатках.

Главным производителем углеполотна на сегодняшний день является Тайвань. Стеклоткань (стекломат) дешевле и ее используют для изготовления стеклопластика или прослаивают слои ею углепластика. Если вас пытаются убедить, что из стеклоткани можно изготовить карбон — не верьте. Это просто будет другой материал по цене карбона.

Итак, при выборе компаунда для карбона важными параметрами являются следующие:

  • Соотношение смола:отвердитель,
  • Вязкость смеси по Брукфильду при 22 °С,
  • Жизнеспособность при 22 °С,
  • Время гелеобразования,
  • Время полного отверждения,
  • Прочность при растяжении,
  • Прочность при статическом изгибе,
  • Теплостойкость.
  • Оптимальное время отверждения — 24 часа при 22-24 °С.

Если опыта мало, можно сделать пробную смесь-тест, чтобы определить время начала гелеобразования для фактических температуры и влажности в помещении.

Изготовление деталей из углепластика (карбона)

Качество деталей из карбона в первую очередь зависит от правильного выбора и качества смолы и углеродного полотна. При ошибках в выборе плотности полотна карбона карбона и скорости застывания смоляной смеси вы не сможете аккуратно выложить заготовку в форме, плотно прижать и полностью удалить пузырьки воздуха.

К основным методам изготовления деталей из карбона можно отнести:

  • формование из препрегов, то есть полуфабрикатов,
  • формование непосредственно в форме,
  • метод аппликации.

Изготовление карбона дома не требует сложного оборудования, и при определенных навыках можно получить детали достойного качества. Поэтому сделать карбон удовлетворительного качества самому вполне реально.

Карбон для автотюнинга

А вот для изготовления некоторых облегченных элементов, где требуется высокая прочность, например, для бамперов, капотов, мелких деталей кузова, может использоваться дорогостоящий настоящий карбон. Но необходимо помнить, что этот материал очень чувствителен к точечным ударам, и есть риск повреждения мелкими камнями и щебнем из-под колес.

И здесь определяющую роль играет мастерство автомастера, насколько совершенно он владеет навыками подбора полотна, смолы и толщины слоев. А восстановление — тоже дорогостоящий процесс. Можно попробовать даже сделать обтяжку карбоном своими руками некрупных элементов.

Если же для вас главную роль играют эстетические параметры, а не облегчение веса автомобиля или мотоцикла, то присмотритесь к ПВХ-пленкам «под карбон», аква-печати или аэрографии.

Метод препрегов

Промышленный процесс формования изделия из препрега (заготовок для формования) в автоклаве представляет собой одновременное протекание сложных процессов:

  • полимеризацию компаунда,
  • вакуумное удаление воздуха и излишков смолы,
  • высокое давление ( до 20 атм) прижимает все слои к матрице, уплотняя и выравнивая их.

Это дорогостоящий процесс, поэтому для мелкосерийного тюнинга в домашних условиях малопригодный.

Разделение этих процессов удешевляет и удлиняет всю процедуру получения карбона самостоятельно.

Изменения при этом вносятся в технологию подготовки препрега, поэтому всегда нужно обращать внимание, для какой технологии предназначена заготовка.

В этом случае препрег готовится в виде сэндвича. После нанесения смолы заготовка с обеих сторон покрывается полиэтиленовой пленкой и пропускается между двух валов. При этом лишняя смола и нежелательный воздух удаляются. Препрег вдавливается в матрицу пуансоном, и вся конструкция помещается в термошкаф. То есть в данном случае препрег представляет полностью готовую к формованию заготовку, с обжатыми слоями и удаленным воздухом.

Этот метод чаще всего и используют автомастерские, покупая заготовки карбона, а матрицы изготавливаются из алебастра или гипса, иногда вытачиваются из металла или в качестве модели используется сама деталь. которую вы хотите повторить из карбона. Иногда модели вырезаются из пенопласта и остаются внутри готовой детали.

Для самостоятельного изготовления карбона чаще всего используют метод «обтяжки» или аппликации углеполотна на заготовку.

Метод аппликации (ручная оклейка)

Сделать карбон своими руками можно методом оклейки, который включает пять основных этапов:

  1. Тщательная подготовка оклеиваемой поверхности: зашкуривание, обезжиривание, скругление углов.
  2. Нанесение адгезива.
  3. Приклеивание углеткани с пропитыванием эпоксидной смолой с отвердителем.
  4. Сушка.
  5. Покрытие защитным лаком или краской.

Наполнители для смолы используют как для придания декоративности, так и для предотвращения стекания смолы с вертикальных поверностей.

Необходимые материалы:

  1. Адгезив для фиксации углеткани на поверхности.
  2. Ткань из углеволокна, которую укладывают на смолу послойно, с прикатыванием твердым валиком.
  3. Эпоксидная смола средней вязкости с отвердителем (иногда она используется в качестве адгезива).
  4. Защитный лак. Лучше всего для защиты от царапин подходит полиуретановый. Нужно выбирать водостойкий и светостойкий. Он не помутнеет. Для высокого блеска в качестве финишного покрытия можно использовать акриловый лак.

Смолу наносят 2-3 раза с промежуточной сушкой и шлифовкой.

Этот метод отличается от традиционного изготовления карбоновых изделий по моделям нанесением адгезива, а не разделителя для легкого съема получившегося полуфабриката.

Компания 3М предлагает даже самоклеющееся углеполотно, но работа с ним требует хороших навыков.

И карбон остается на оклеиваемой детали, упрочняя ее. Этот метод чаще всего используется для оклеивания бампера, приборной панели и пр.

Метод формования в форме с вакуумом

  1. Нанесение разделительного состава на поверхность модели. Для матовых и полуглянцевых поверхностей обычно применяется разделительный воск, а для глянцевых поверхностей(пластик и металл) — разделитель типа WOLO и растворы для грунтования, которые используются при мелкосерийном призводстве.
  2. Выкладывание углеткани в матрицу, без морщин и пузырей.
  3. Пропитка углеткани смолой.
  4. Слоев может быть несколько. В некоторых случаях углеткань можно чередовать со стеклотканью.
  5. Наложение перфорированной пленки для отжима излишков смолы и выхода воздуха. Желательно укладывать внахлест.
  6. Прокладка впитывающего слоя.
  7. Установка вакуумной трубки и порта для подключения вакуумного насоса.
  8. Помещение всей конструкции в прочную вакуумную пленку, приклеивание герметизирующим жгутом к оснастке.

Вся процедура напоминает помещение какого-либо предмета в вакуумный пакет, которые продаются в магазинах для хранения вещей, с последующей откачкой из него воздуха. Можно, кстати, поэкспериментировать с такими вакуумными пакетамий. Они очень прочные и продаются разных размеров. А вакуумный насос для домашнего использования обойдется в среднем в 150-200$.

Метод формования с помощью давления (ручная прикатка)

Применяется для самостоятельного изготовления деталей из карбона и аналогичен методу формования вакуумом, но без использования дорогостоящей оснастки. Наборы включают кисти для нанесения смолы и валики для выдавливания воздуха и прикатки слоев.

Для простого тюнинга автомобиля понадобятся:

  • углеполотно плотностью 200-300 г/м,
  • эпоксидная смола,
  • отвердитель,
  • жесткий валик и кисть.

На Alibaba.com углеполотно плотностью 200 г/м.кв. плетения twill предлагается по цене от 10 до 25 долларов за квадратный метр. Правда, и покупать нужно от 10 метров. Но можно договориться о получении образцов.

На поверхность формы наносится разделительный воск, гелькоат для формирования защитно-декоративного слоя на поверхности готового изделия. После его высыхания кистью наносится эпоксидная смесь для углепластика и начинается выкладка углеткани.

Каждый слой прокатывается валиком для удаления пузырьков воздуха и получения максимального сцепления. После полного высыхания на воздухе или в термошкафу деталь извлекается из матрицы, шлифуется, покрывается защитным лаком.

При таком методе получается высокий расход смолы (в три раза выше плотности углеполотна), но зато именно таким способом можно изготовить любую деталь из карбона своими руками.

Что такое карбон (углепластик)?

Углепластик — это композиционный многослойный материал, представляющий собой полотно из углеродных волокон в оболочке из термореактивных полимерных (чаще эпоксидных) смол, Carbon-fiber-reinforced polymer .

Международное наименование Carbon — это углерод, из которого и получаются карбоновые волокна carbon fiber.

Но в настоящее время к карбонам относят все композитные материалы, в которых несущей основой являются углеродные волокна, а вот связующее сможет быть разным. То есть карбон и углепластик объединились в один термин, привнеся путаницу в головы потребителей. То есть карбон и углепластик — это одно и то же.

Это инновационный материал, высокая стоимость которого обусловлена трудоемким технологическим процессом и большой долей ручного труда при этом. По мере совершенствования и автоматизации процессов изготовления карбона его стоимость будет снижаться. Для примера: стоимость 1 кг стали — менее 1 доллара, 1 кг карбона европейского производства стоит около 20 долларов. Удешевление возможно только за счет полной автоматизации процесса.

Применение карбона

Изначально карбон был разработан для спортивного автомобилестроения и космической техники, но благодаря своим отличным эксплуатационным свойствам, таким как малый вес и высокая прочность, получил широкое распространение и в других отраслях промышленности:

  • в самолетостроении,
  • для спортивного инвентаря: клюшек, шлемов, велосипедов.
  • удочек,
  • медицинской техники и др.

Гибкость углеродного полотна, возможность его удобного раскроя и резки, последующей пропитки эпоксидной смолой позволяют формовать карбоновые изделия любой формы и размеров, в том числе и самостоятельно. Полученные заготовки можно шлифовать, полировать, красить и наносить флексопечать.

Технические характеристики и особенности карбона

Популярность углепластика объясняется его уникальными эксплуатационными характеристиками, которые получаются в результате сочетания в одном композите совершенно разных по своим свойствам материалов — углеродного полотна в качестве несущей основы и эпоксидных компаундов в качестве связующего.

Армирующий элемент, общий для всех видов углепластика — углеродные волокна толщиной 0,005-0,010 мм, которые прекрасно работают на растяжение, но имеют низкую прочность на изгиб, то есть они анизотропны, прочны только в одном направлении, поэтому их использование оправдано только в виде полотна.

Дополнительно армирование может проводиться каучуком, придающим серый оттенок карбону.

Карбон характеризуются высокой прочностью, износостойкостью, жёсткостью и малой, по сравнению со сталью, массой. Его плотность — от 1450 кг/м³ до 2000 кг/м³. Технические характеристики углеволокна можно посмотреть в сравнительной таблице плотности, температуры плавления и прочностных характеристик.

Еще один элемент, используемый для армирования вместе с углеродными нитями — кевлар. Это те самые желтые нити, которые можно видеть в некоторых разновидностях углепластика. Некоторые недобросовестные производители выдают за кевлар цветное стекловолокно, окрашенные волокна вискозы, полиэтилена, адгезия которых со смолами гораздо хуже, чем у углепластика, да и прочность на разрыв в разы меньше.

Кевлар—это американская торговая марка класса полимеров арамидов, родственных полиамидам, лавсанам. Это название уже стало нарицательным для всех волокон этого класса. Армирование повышает сопротивление изгибающим нагрузкам, поэтому его широко используют в комбинации с углепластиком.

Особенности технологии изготовления углеродного волокна Волокна, состоящие из тончайших нитей углерода, получают термической обработкой на воздухе, то есть окислением, полимерных или органических нитей (полиакрилонитрильных, фенольных, лигниновых, вискозных) при температуре 250 °C в течение 24 часов, то есть практически их обугливанием. Вот так выглядит под микроскопом нить после обугливания.

После окисления проходит карбонизация — нагрев волокна в среде азота или аргона при температурах от 800 до 1500 °C для выстраивания структур, подобных молекулам графита.

Затем проводится графитизация (насыщение углеродом) в этой же среде при температуре 1300-3000 °C. Этот процесс может повторяться несколько раз, очищая графитовое волокно от азота, повышая концентрацию углерода и делая его прочнее. Чем выше температура, тем прочнее получается волокно. Этой обработкой концентрация углерода в волокне увеличивается до 99%.

Виды волокон карбона. ПолотноВолокна могут быть короткими, резаными, их называют «штапелированными», а могут быть непрерывные нити на бобинах.Это могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).

Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна Carbon Fabric. Оно получается различными видами плетения: елочкой, рогожкой и пр., имеющими международные названия Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой. Правильный выбор полотна для углепластика по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.

В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа содержится 3-4 слоя.

Достоинства и недостаткиБолее высокая цена карбона по сравнению со стеклопластиком и стекловолокном объясняется более сложной, энергоемкоймногоэтапной технологией, дорогими смолами и более дорогостоящим оборудованием (автоклав). Но и прочность с эластичностью при этом получаются выше наряду со множеством других неоспоримых достоинств:

  • легче стали на 40%, легче алюминия на 20% (1,7 г/см3 — 2,8 г/см3 — 7,8 г/см3),
  • карбон из углерода и кевлара немного тяжелее, чем из углерода и резины, но намного прочнее, а при ударах трескается, крошится, но не рассыпается на осколки,
  • высокая термостойкость: карбон сохраняет форму и свойства до температуры 2000 ○С.
  • обладает хорошими виброгасящими свойствами и теплоемкостью,
  • коррозионная стойкость,
  • высокий предел прочности на разрыв и высокий предел упругости,
  • эстетичность и декоративность.

Но по сравнению с металлическими и деталями из стекловолокна углеводородные детали имеют недостатки:

  • чувствительность к точечным ударам,
  • сложность реставрации при сколах и царапинах,
  • выцветание, выгорание под воздействием солнечных лучей, для защиты покрывают лаком или эмалью,
  • длительный процесс изготовления,
  • в местах контакта с металлом начинается коррозия металла, поэтому в таких местах закрепляют вставки из стекловолокна,
  • сложность утилизации и повторного использования.

Изготовление карбона

Существуют следующие основные методы изготовления изделий из углеткани:

1. Прессование или «мокрый» способ. Полотно выкладывается в форму и пропитывается эпоксидной или полиэфирной смолой. Излишки смолы удаляются или вакуумформованием или давлением. Изделие извлекается после полимеризации смолы. Этот процесс может проходить или естественным путем или ускоряется нагревом. Как правило, в результате такого процесса получается листовой углепластик.

2. Формование. Изготавливается модель изделия (матрица) из гипса, алебастра, монтажной пены, на которую выкладывается пропитанная смолой ткань. При прокатке валиками композит уплотняется и удаляются излишки воздуха. Затем проводится либо ускоренная полимеризация и отверждение в печи, либо естественная. Этот способ называют «сухим» и изделия из него прочнее и легче, чем изготовленные «мокрым» способом. Поверхность изделия, изготовленного «сухим» способом, ребристая (если его не покрывали лаком).

К этой же категории можно отнести формование из листовых заготовок — препрегов.

Смолы по своей способности полимеризоваться при повышении температуры разделяются на «холодные» и «горячие». Последние используют в технологии препрегов, когда изготавливают полуфабрикаты в виде нескольких слоев углеткани с нанесенной смолой. Они в зависимости от марки смолы могут храниться до нескольких недель в неполимеризованном состоянии, прослоенные полиэтиленовой пленкой и пропущенные между валками для удаления пузырьков воздуха  и лишней смолы. Иногда предпреги хранят в холодильных камерах. Перед формованием изделия заготовку разогревают, и смола опять становится жидкой.

3. Намотка. Нить, ленту, ткань наматывают на цилиндрическую заготовку для изготовления труб. Кистью или валиком наносят послойно смолу и сушат преимущественно в печи.

Во всех случаях поверхность нанесения углепластика смазывается разделительными смазками для простого снятия получившегося изделия после застывания.

Углепластик своими руками

Изделия на основе углеволокна можно формовать и самим, что уже давно и успешно применяется при ремонте велосипедов, спортивного инвентаря, тюнинге автомобилей. Возможность экспериментировать с наполнителями для смолы, со степенью ее прозрачности предоставляют широкое поле для творчества любителям автотюнинга карбоном.

Как следует из описанной выше технологии, для формования необходимо:

  • форма-матрица,
  • углеродное полотно,
  • смазка для формы для легкого съема готовой заготовки,
  • смола.

Где брать углеткань? Тайвань, Китай, Россия. Но в России это относится к «конструкционным тканям повышенной прочности на основе углеволокна». Если найдете выход на предприятие, то вам очень повезло. Много компаний предлагают готовые наборы для отделки автомобилей и мотоциклов «Сделай сам», включающих фрагменты углеткани и смолу.

70% мирового рынка углеткани производят тайваньские и японские крупные бренды: Mitsubishi, TORAY, TOHO, CYTEC, Zoltec и пр.

В общих чертах процесс самостоятельного изготовления углепластика выглядит так:

  1. Антиадгезивом смазывается форма.
  2. После его высыхания наносится тонкий слой смолы, на который прикатывается или прижимается углеткань, для выхода пузырьков воздуха.
  3. Затем наносится еще один слой смолы  для пропитки. Можно нанести несколько слоев ткани и смолы, в зависимости от требуемых параметров изделия.
  4. Смола может полимеризироваться на воздухе. Это происходит обычно в течение 5 дней. Можно поместить заготовку в термошкаф, нагретый до температуры 140 – 180 ◦С, что значительно ускорит процесс полимеризации.

Затем изделие извлекаем из формы, шлифуем, полируем, покрываем лаком, гелькоутом или красим.

Надеемся, вы нашли исчерпывающий ответ на вопрос «Что такое карбон»?

Углепластики: изготовление, свойства и применение

Углепластики (карбопластики, углеродопласты) — это композиты, содержащие в качестве наполнителя углеродные волокна. Этот сравнительно новый класс ПКМ получил в последние годы наиболее интенсивное развитие благодаря своим уникальным свойствам, а именно:

  • высоким значениям прочности и жесткости
  • низкой плотности
  • химической инертности
  • тепло- и электропроводности
  • высокой усталостной прочности
  • низкой ползучести
  • низким значениям коэффициента линейного термического расширения
  • высокой радиационной стойкости

Важным фактором, определяющим в некоторой степени перспективность углепластиков, является их хорошая технологичность, позволяющая перерабатывать углепластики в изделия на стандартном технологическом оборудовании с минимальными трудовыми и энергетическими затратами.

Углепластик (carbon)

В зависимости от вида углеродного армирующего наполнителя, его текстурной формы и геометрических размеров углепластики можно разделить на три группы:

  • углеволокниты
  • углетекстолиты
  • углепресволокниты

Углепластики на основе непрерывных ориентированных углеродных нитей, жгутов и ровниц составляют группу углеволокнитов. Наиболее представительная группа углепластиков — углетекстолиты, в которых в качестве армирующего наполнителя используют тканые ленты и ткани различных текстурных форм. Углепластики на основе дискретных волокон составляют группу углеволокнитов.

Армирующие наполнители

Процесс изготовления углеродных волокон заключается в последовательном температурном и механическом воздействиях на исходные органические волокна, приводящих к их карбонизации, графитации и совершенствованию структуры.

На первом этапе нагрев исходных растянутых волокон до температуры 220 °С приводит к образованию поперечных химических связей между макромолекулами полимера.

На втором этапе нагрев до температуры 1000 °С позволяет получить так называемые карбонизованные волокна, на 80…95 % состоящие из элементарного углерода и обладающие достаточно высокой прочностью.

На третьем этапе (термообработка до температуры 1500…2000 °С) получают конечный продукт — графитизированное углеродное волокно с кристаллической структурой, близкой к структуре графита. В зависимости от условий получения и типа исходного сырья предел прочности и модуль упругости углеродных волокон находятся соответственно в пределах 2…3,5 ГПа и 220…700 ГПа. Наибольшей прочностью обладают волокна, которые при нагреве на последнем этапе (Т = 1600 °С) имеют мелкокристаллическую структуру. Высокомодульные материалы получают в результате растяжения волокна при температуре 2700 °С.

В качестве армирующих элементов углеродные волокна применяют в виде жгутов, лент и тканей. Они являются более хрупкими и менее технологичными, чем стеклянные, отличаются химической инертностью, низкой поверхностной энергией, обусловливающей плохое смачивание волокон растворами и расплавами матричных материалов, что в итоге приводит к низкой прочности сцепления на границе «волокно-матрица». Основное достоинство — высокая жесткость. Механические характеристики остаются постоянными до температуры 450 °С, что позволяет применять углеродные волокна с полимерной и металлической матрицами. Волокна характеризуются отрицательным коэффициентом линейного расширения, что в совокупности с положительным коэффициентом у матрицы позволяет синтезировать композиции для конструкций, сохраняющих свои размеры при температурном воздействии. Углеродные волокна используют для изготовления элементов, необходимая жесткость которых является условием, снижающим эффективность применения материалов, армированных стеклянными волокнами. Стоимость углеродных волокон на два порядка выше, чем стеклянных.

Полимерные матрицы

Полимерная матрица определяет эксплуатационные и технологические свойства углепластика. Для углепластиков используют как термореактивные, так и термопластичные матрицы. Из термореактивных матриц наибольшее рас-пространение получили эпоксидные связующие: эпоксидно-анилинофенолформальдегидное марки 5-211-Б, эпоксинаволачное — УНДФ, эпоксидное модифицированное диапластом — УП-2227, на основе тетрафункциональной эпоксидной смолы связующее — ВС-2526к, на основе смеси трех эпоксидных смол связующее — ЭДТ-69Н. Применение эпоксидных матриц обеспечивает получение углепластиков с высокими прочностными характеристиками, водостойкостью и химической стойкостью, хорошей эксплуатационной надежностью и ресурсом.

Из термопластичных матриц нашли применение полиимидная СП-97, полиамидоимидная ПАИС-104 и полисульфон, обеспечивающие работоспособность углепластиков при более высоких температурах (особенно полиимидная матрица — до 200…300 °С). Основной недостаток этих матриц — трудность изготовления на их основе полуфабрикатов (пропитанных лент — препрегов) и высокие температуры их отверждения.

Длительное тепловое воздействие может вызвать неотвратимое изменение химической структуры полимеров вследствие протекания термодеструкции. При длительном воздействии переменной механической нагрузки и недостаточном теплоотводе может произойти переход от механического разрушения материала к тепловому за счет диссипации механической энергии в тепловую.

Параметр

Марка углепластика

КМУ-1

КМУ-1 лм КМУ-3 КМУ-Злп КМУ-4л КМУ-4э КМУ-9 КМУ-9т КМУ-9тр

Наполнитель

Жгут ВМН-4

Лента ЛУ-П Жгут ВМН-4 Лента ЛУ-П Лента ЛУ-П Лента Элур-П Жгут УКН- 11/500 Лента УОЛ- 300 Ткань УТ-900- 2,5

Матрица

ЭТФ

ЭТФ-М 5-211Б 5-211Б ЭНФБ ЭНФБ УНДФ- 4А УНДФ- 4АР УНДФ- 4АР

Объемное содержание волокон, %

57-63

58-63 57-63 50-55 50-55 54-59 60-62 58-62 55-59

Плотность р-КГ3, кг/м3

1,45-1,49

1,48-1,50 1,4-1,45 1,4-1,45 1,45-1,50 1,49-1,52 1,55-1,58 1,52-1,56 1,52-1.54

Прочность при растяжении, МПа: вдоль волокон поперек волокон

1020 14

780 18 110023 730 20 800 24 900 32 1500 32 1500 28 60 60

Предел прочности при сжатии, МПа:

вдоль волокон поперек волокон

400 100

580 130 700 150 530 120 750 130 900 130 1200 140 1200 160 60 58

Прочность при сдвиге вдоль волокон, МПа

30

61 40 54 70 78 85 78 52

Модуль упругости при растяжении, ГПа: вдоль ВОЛОКОН Еу поперек волокон Е-,

180

145 180 9 1479,9 140 10 120 10 140 9 1258 67 67

Модуль сдвига G]->, ГПа

3,5

4,5 5,1 5,1 6,0 6,5 6,8 5,2 8,0

Коэффициент Пуассона Мц

0,27

0,27 0,31 0,27 0,25 0,265 0,27 0,33 0,07

Физико-механические свойства углепластиков

Уровень свойств углепластиков зависит от характеристик применяемых углеродных волокон, вида и текстурной формы армирующего наполнителя, упругопрочностных свойств полимерной матрицы, качества раздела «волокно-матрица», от технологии переработки и структуры армирования материала. Накоплен значительный объем информации о физико-механических свойствах эпоксидных углепластиков, их поведении при различных видах нагружения (статика, повторная статика, динамика) и деформировании (растяжение, сжатие, сдвиг, срез, смятие), а также о ресурсе и сроке их эксплуатации в различных изделиях. В таблице представлены данные о свойствах однонаправленных углепластиков.

Углепластики обладают достаточно высокой длительной прочностью и низкой ползучестью благодаря высокой жесткости и низкой деформагивности углеродных волокон. Коэффициент длительного сопротивления Rt углепластиков в диапазоне рабочих температур t = 80…200 °С и при длительности нагружения r = 500… 1000 ч при растяжении и сжатии составляет 0,5…0,9 % от величины кратковременной прочности материала. Ползучесть углепластиков при длительном нагружении нагрузкой, составляющей (0,4 — 0,5) GВ, как правило, не превышает 0,1…0,5 %. Указанные характеристики благоприятно влияют на работоспособность материала при длительном нагружении с высоким уровнем действующих напряжений.

Углепластики обладают наибольшей среди известных КМ усталостной прочностью. Коэффициент усталостного сопротивления в зависимости от вида и степени асимметрии цикла равен (0.5…0,7) GВ, т. е. в 2-3 раза выше, чем у стеклопластиков, что связано также с высокими значениями модуля упругости углеродных волокон и как следствие более низким уровнем напряжений и меньшей повреждаемостью полимерной матрицы.

Выносливость углепластика может быть оценена через свойства и состав его компонентов следующим образом:

GR= GМ*GB* (EВ/EМ)*K.

Из уравнения следует, что усталостная прочность композита прямо пропорциональна прочности матрицы GМ и модуля упругости армирующих волокон ЕВ и обратно пропорциональна модулю упругости матрицы ЕМ. Коэффициент К характеризует степень использования прочности матрицы при циклическом нагружении и учитывает наряду с природой матрицы влияние технологии изготовления композита и уровень внутренних остаточных напряжений.

По сравнению с другими ПКМ углепластики обладают меньшей удельной ударной вязкостью, трещиностойкостью и остаточ- ностью к концентрации напряжений. Значительное влияние на чувствительность углепластиков к концентрации напряжений оказывает структура армирования и направление приложения нагрузки по отношению к ориентации волокон.

Так, при растяжении под углом ±45° к направлению армирования прочность углепластика очень мало зависит от размера концентратора. Мелкие дефекты, например, отверстия диаметром, не превышающим 4 мм, тоже почти не влияют на прочность углепластика квазиизотропной структуры как при кратковременном, так и при длительном статическом и усталостном нагружении.

Повышение остаточной прочности и вязкости разрушения углепластиков возможно путем создания гибридного (поливолокнистого) материала в виде чередования сплошных слоев углеродных и стеклянных, углеродных и органических наполнителей либо в виде периодически расположенных высокомодульных (борных) или низкомодульных (стеклянных с армированием ±45°) стопоров трещин. Применение высокомодульных стопоров приводит к перераспределению большей части нагрузки на стопоры в вершине трещины, а эффективность низкомодульных стопоров заключается в создании зоны низких напряжений с повышенной вязкостью разрушения, которая препятствует распространению трещины.

Ударную вязкость материала, пренебрегая прочностью матрицы, определяют параметром ((Ga)^2/2Е)*VВ (где Ga — реализованная прочность волокна в композите), поэтому для повышения ударной вязкости углепластиков целесообразно вводить в них высокопрочные, но низкомодульные волокна, какими являются стеклянные или органические волокна. Ударную вязкость поливолокнистого материала, содержащего низкомодульные волокна в количестве V2 с модулем упругости Е2 при реализации прочности волокон в композите G2 и высокомодульные волокна в количестве V1 с модулем упругости Е1 и реализованной прочностью углеродного волокнита в композите G1, можно определить по выражению:

a = ((G1^2)/2E1)V1 + ((G2^2)/2E2)V2

Демпфирующая способность углепластика определяется в основном рассеиванием энергии в матрице, сопровождающимся переходом механической энергии в тепловую, химическую и электрическую, и существенно зависит от уровня нагружения, структуры армирования материала и рабочей температуры. Если однонаправленные углепластики имеют уровень демпфирующей способности вдоль волокон 0,5… 1,0 %, то в диагонально-армированном углепластике она возрастает в 5-7 раз.

Рост механических потерь с увеличением температуры объясняется снижением модуля сдвига углепластика, что связано со значительными физическими изменениями, происходящими в полимерных связующих при повышении температуры. С уменьшением модуля сдвига наблюдается монотонное повышение коэффициента механических потерь.

Зависимость предела прочности

Рис. Зависимость предела прочности (1) и модуля упругости при растяжении (2), логарифмического декремента затухания (3) от структуры армирования углепластика КМУ-4э

Зависимость логарифмического декремента от модуля сдвига полимерной матрицы для углепластиков

Рис. Зависимость логарифмического декремента от модуля сдвига полимерной матрицы для углепластиков КМУ-Зл, КМУ-1лм, КМУ-4э при температуре: 20 °С (7), 100 °С (2), 150 °С (5), 180 °С (4), 200 °С (5)

Теплофизические характеристики углепластиков зависят от типа волокон, типа и объемного содержания матрицы, содержания пор в матрице, температуры испытаний. Для различных углепластиков они существенно не различаются и находятся в следующих диапазонах:

  • для коэффициентов теплопроводности 0,5… 1,0 Вт/м*С;
  • для коэффициентов термического расширения (-1,5.. .0,5)*10-6/°С;
  • для коэффициента теплоемкости 0,8… 1,5 ккал/кг * °С.

Имеющиеся сведения о поведении углепластиков под влиянием различных факторов внешней среды и в условиях, близких к эксплуатационным, могут быть использованы для прогнозирования их ресурсных характеристик.

Среди разнообразных видов воздействия наиболее опасным и отрицательно влияющим на структуру и свойства для всех ПКМ является климатическое термовлажностное циклирование, чередующееся или сочетающееся с рабочими тепловыми или механическими нагрузками. Свойства углепластиков в сухом состоянии при комнатной и повышенной температурах и после длительного термостарения изменяются незначительно. При совместном действии влаги и температуры наблюдаются структурные превращения в матрице и на границах раздела «волокно-матрица», вызывающие ухудшение характеристик. Механизм изменения свойств, обусловленный сорбцией влаги, связан с двумя основными процессами: потерями температурной прочности и жесткости вследствие пластификации матрицы в объеме и в приграничном слое и потерями из-за микро- и макрорастрескивания матрицы. В зависимости от типа материала их предельное влагопоглощение различается в 1,5—2 раза и составляет для наиболее влагостойких материалов 1 %.

Уровень безопасного содержания влаги в углепластиках составляет 0,6…0,7 %; дальнейшее увеличение содержания влаги может привести к снижению упругопрочностных характеристик углепластиков при максимальной рабочей температуре на 15.. .20 %.

Технологические приемы переработки углепластиков аналогичны технологии переработки СП. В зависимости от формы и геометрических размеров детали применяются соответствующие методы формования: прессование, автоклавное формование, намотка, пултрузия, вакуумное или пресскамерное формование, пропитка под давлением. Главное в технологическом процессе — обеспечить выполнение требований к основным технологическим параметрам проведения режима формования (температура формования и скорость подъема температуры, величина и время приложения давления формования, время выдержки на отдельных режимах формования, скорость и температура охлаждения).

Зеркало заднего вида из углепластика

Области эффективного применения углепластиков

По комплексу свойств углепластики существенно превосходят традиционные стали, алюминиевые и титановые сплавы, обладая повышенными удельной прочностью и жесткостью, высокой усталостной и длительной прочностью, возможностью регулирования анизотропии свойств, широким комплексом тепло- и электрофизических характеристик, многофункциональностью назначения. Углепластики находят все более широкое применение в различных отраслях промышленности.

В технике объем внедрения углепластиков в 70-90-е годы XX века увеличивался интенсивно: от 2…4 % (от веса конструкции) до 25…60%.

В конструктивных решениях выполнения деталей из углепластиков можно выделить три направления:

  • монолитные конструкции
  • трехслойные панели (в основном с сотовым заполнителем)
  • комбинированные (металлопластиковые) конструкции

В каждом конкретном случае необходимо оценивать весовую, техническую и эксплуатационную эффективность конструкции.

Основная тенденция применения углепластиков — создание крупногабаритных элементов конструкций. При этом резко со-кращается количество входящих деталей, появляется дополнительное снижение массы конструкции за счет уменьшения количества узлов соединений. Применение углепластиков в авиационных конструкциях позволяет снизить их массу на 20…40 %, повысить жесткость элементов конструкций на 30…50 %, выносливость — в 3-4 раза, а в некоторых случаях увеличить и прочность конструкций. В космической технике с применением углепластиков изготовляются высоконаправленные антенны, микроволновые фильтры и волноводы, оптические телескопы, рамы солнечных батарей, корпуса ракетных двигателей, различные ферменные конструкции, корпуса ракет и транспортных контейнеров.

Зарубежная и отечественная практика показала целесообразность использования углепластиков:

  • в автомобильной промышленности — для изготовления кузовов легковых и кабин грузовых автомобилей, дверей, бамперов, цистерн для перевозки топлива, однолистовых рессор и рычагов подвески, ободьев колес, труб карданных передач, корпусов двигателей, деталей шатунно-поршневой группы (шатунов, поршней, поршневых колец, клапанов и т. д.);
  • в судостроении — для корпусов морских и речных судов, корпусов малых тральщиков, в панелях, перегородках, палубных надстройках, для гребных винтов, для изготовления глубоководных аппаратов;
  • в сельхозмашинах — для изготовления прицепного сельскохозяйственного оборудования;
  • в станкостроении — для станин станков, вращающихся деталей электрооборудования, маховиков, аккумуляторов кинетической энергии, для деталей машин с высокими скоростями вращения, для роботов, манипуляторов.

Благодаря высокой устойчивости к действию химически агрессивных жидкостей и газов углепластики успешно применяются в химическом машиностроении для изготовления реакторов, трубопроводов центрифуг, лопастей насосов, осадительных ванн, выхлопных труб. В конструкции ткацких станков из углепластиков изготовляют подборочные и направляющие стержни, ремизные рамы, рапиры, спицы, тяги, что позволяет увеличить срок службы деталей, повысить износостойкость, уменьшить величину усилий, поднять производительность станков, уменьшить энергозатраты.

Высокая радиационная стойкость углепластиков делает их применение весьма эффективным в нейтронном оборудовании, для изготовления контейнеров и перевозки радиоактивных материалов, для захоронения радиоактивных отходов.

Благодаря хорошей электропроводности углеродных волокон углепластики на их основе успешно применяются в качестве нагревательных элементов для обогрева помещений, одежды, животноводческих ферм.

Высокая биологическая и механическая совместимость углеродных волокон с тканями живого организма определяют перспективу их применения в медицинской технике.

Низкий коэффициент линейного термического расширения углепластиков позволяет их использовать в криогенной технике при изготовлении баллонов для хранения сжиженных газов, а также для трубопроводов, клапанов.

Углепластики с высокой термостойкостью находят применение в металлургии в качестве арматуры и футеровки печей, деталей приборов, погруженных в жидкие металлы, деталей и узлов металлургических станков. Все чаще углепластики используются в строительстве для изготовления панелей жилых домов, балок, пролетов мостов, кранов.

В электротехнической промышленности углепластики эффективны для создания лопастей ветроэнергетических установок различной мощности, в электродвигателях, приборных панелях, для изготовления опор линии электропередач, в изоляторах для линий высоковольтных передач, для защиты от электромагнитных волн, в антеннах средств связи, радиоприборах, диффузорах громкоговорителей.

В железнодорожном транспорте эффективно применение углепластиков для изготовления вагонов, контейнеров, узлов подвески.

В нефтяной и газовой промышленности углепластики находят применение в трубах для бурения глубоких скважин, в газопроводах.

Углепластики широко используются при изготовлении спортивного инвентаря, спортивных самолетов. Они существенно позволяют снизить массу, повысить жесткость и летные качества самолетов и планеров, ходовые качества гоночных судов, яхт, байдарок, каноэ. Из них изготовляют гоночные велосипеды, мотоциклы, шесты, весла, ракетки для гольфа, тенниса, луки, стрелы, удочки, хоккейные клюшки, лыжи, лыжные палки и пр.