Всё для ремонта авто

Меню

Метка: Вариатор

Вариаторы, как один из видов автоматических трансмиссий

Испокон автомобильных веков ведутся споры о том, какие виды трансмиссий и коробок передач лучше, а какие хуже. И, наверное, спор этот так и будет бессмысленным. Каждый вид трансмиссий привлекателен одним и отталкивает потребителя другим. Сколько людей, столько мнений.

На «гражданских» автомобилях применялись и применяются следующие виды и способы передачи крутящего момента на ведущие колеса:

  • механические коробки передач;
  • вариаторы;
  • полуавтоматические коробки передач;
  • автоматические коробки.

В этой статье мы остановимся только на одном виде. А именно, рассмотрим что же такое вариатор.

Вообще-то, простейшие вариаторы, как механизмы, известны со средних веков. Да и для автомобилестроения идея использования в трансмиссии вариаторных передач не нова.

Еще на самой заре в 1895 году швейцарский инженер Рудольф Эгг связал двигатель с ведущими колесами автомобиля с помощью ременной передачи. Шкивы в ней были не сплошными, а состояли из половинок, которые с помощью рычагов можно было сдвигать или раздвигать. Этим уменьшался или увеличивался диаметр обкатки приводного ремня, а с ним изменялось передаточное отношение. Но громоздкая, ненадежная и создающая немало неудобств во время управления машиной конструкция не выдержала конкуренции со стороны обычных, а затем и автоматических коробок передач, и была надолго забыта.

Однако, спустя некоторое время идея ременной передачи снова возникла. Автомобилистам напомнил о существовании альтернативных «трансформаторов» крутящего момента голландец Хуберт ван Дорн, который оснастил клиноременным вариатором небольшую машинку DAF Daffodil. Случилось это в 1958 году.

Итак, по существу. Клиноременный вариатор означает то, что поперечное сечение ремня вариатора представляет собой клин. Каждый же из двух шкивов, как уже говорилось, разрезной, и напоминает две тарелки, повернутые донышками друг к другу. Что заставляло подвижные половинки шкива перемещаться? При нажатии на педаль газа двигатель автомобиля увеличивал обороты, при этом росло разряжение во впускном коллекторе мотора. Вот этим разряжением ван Дорн и воспользовался: при увеличении оборотов двигателя половинки ведущего шкива сдвигались, а ведомого — раздвигались, что заставляло ведомый вал вариатора и связанные с ним по трансмиссии колеса автомобиля вращаться быстрее. Разумеется, при сбросе газа порядок действий был обратным. Собственно, по аналогичному принципу работают и современные вариаторы, только управляют ими уже, естественно, гидравлика и электроника.

Одним из основных преимуществ вариатора над другими типами коробок передач является легкое устранение недостатков других КПП, связанных с неоптимальностью выбора передачи. Наверняка очевидно, что как точно ни выверяй момент включения той или иной передачи будь то в механической коробке, будь то в гидромеханическом автомате, обороты двигателя хоть не намного, но никогда не будут соответствовать оптимальным для данного режима движения. Как не будет соответствовать идеалу и расход топлива. Можно, конечно, увеличивать число передач, и это несколько сгладит ступенчатый характер переключения и изменения нагрузки на мотор и узлы трансмиссии. Однако здесь следует иметь в виду, что каждая дополнительная передача — это усложнение конструкции, увеличение габаритных размеров, веса и стоимости коробки. Поэтому, в основном существует предел — 6-7 передач.

Вариатор же с легкостью позволяет реализовать бесконечное множество передач. При этом передаточное отношение вариатора изменяется плавно, и также плавно, а не скачкообразно, трансформируется крутящий момент к ведущим колесам. В результате мощность, отдаваемая двигателем, почти идеально согласуется с динамикой движения автомобиля. Отсюда снижение износа двигателя и агрегатов трансмиссии при одновременном улучшении топливной экономичности вследствие оптимальной работы мотора на большинстве эксплуатационных режимов и отсутствия разрыва «потока» крутящего момента, который случается при переключении передач.

Однако, при всем этом вариаторы до сих пор не вытеснили из производства механические коробки передач и гидромеханические автоматы.

Изначально проблема заключалась исключительно в низкой надежности клиноременных вариаторов. Их ремни, изготовленные из резинокордной ткани, быстро растягивались, начинали проскальзывать на шкивах, интенсивно изнашивались и, наконец, разрывались. Этот неприятный момент наступал в среднем через каждые 20-30 тыс. км пробега.

Добавить ресурса резиновому ремню оказалось непросто. Лишь в середине 1980-х дело опять сдвинулось с мертвой точки. Ремень стал металлическим, состоящим из нескольких сотен стальных сегментов, нанизанных на гибкие направляющие, опять же стальные. Следует отметить, что этот факт и стал причиной возрастания популярности вариаторов. Их получили некоторые модели различных производителей, таких как Fiat, Ford, Honda, Nissan, Subaru, Suzuki, Volvo.

Но теперь на первый план вышел другой недостаток вариаторов — небольшие величины крутящего момента, которые они способны были обеспечивать. По этой причине бесступенчатые коробки передач устанавливались только на автомобилях компактного и малого классов, причем лишь на их модификациях с самыми маломощными двигателями.

Чтобы разорвать очередной порочный круг, потребовалось еще десятилетие. В 1997 году Honda доказала, что вариатор вполне дееспособен для работы со 115 л.с. мощности и 145 Нм крутящего момента, которыми располагал 1,6-литровый «шестнадцатиклапанник» Civic. В следующем году Nissan представил модификацию Primera, в котором вариатор был агрегирован с двухлитровым бензиновым двигателем. Тем самым была преодолена планка в 140 л.с. и 180 Нм, а это означало, что бесступенчатые трансмиссии стали доступными и машинам среднего размерного класса.

Технологической сенсацией 1999 года стала модель Audi A6 Multitronic, в которой V-образная «шестерка» объемом 2,8 л работала в паре с вариатором, спокойно отрабатывавшем 193 л.с. и 280 Нм. Двигателя. Правда, Audi пришлось заново изобретать ремень вариатора. В итоге он превратился в многорядную стальную цепь, при этом со шкивами контактировали не сегменты ремня, как было в прежних конструкциях, а скошенные торцы соединительных осей звеньев.

Примечательно, что до появления Audi A6 Multitronic вариаторы еще так и не смогли оправдать возлагавшиеся на них надежды в плане улучшения показателей расхода топлива: предполагаемую экономию «съедал» сам вариатор — внутренние потери, низкий КПД. Но теперь все встало на свои места. Впрочем, в сравнении с 5-ступенчатой механической КПП разница была не особенно заметна: расход топлива на 100 км пробега уменьшился всего на 0,2 л. Однако когда Multitronic сравнили с автоматической трансмиссией Tiptronic, то вариатор переиграл автомат по всем статьям: по экономии топлива — на 0,9 л/100 км, в разгоне до 100 км/ч — на 1,3 с.

Тогда же фирма ZF Transmission произвела автоматическую коробку передач, аналоги которой используются на большинстве европейских автомобилей, и выкупила у Ford завод по производству приводов, чтобы перепрофилировать его под… выпуск вариаторов. И в 2004 году автопроизводителей по-настоящему «прорвало» на машины с вариаторами.

Благодаря электронному управлению, современные вариаторы несколько изменили алгоритм работы. Они обеспечивают плавный, без рывков разгон, поддерживая обороты двигателя в оптимальной, с точки зрения экономичности, зоне. Но если водитель вдавил педаль газа в пол, требуя от машины энергичного ускорения, то вариатор сымитирует известный по классическим автоматам режим Kick-down. Кроме того, чтобы угодить спортивно ориентированным водителям, предусматривается ручное управление — для этого в вариаторе имеется несколько фиксированных передач.

Параллельно Mazda и Nissan ведут работы по тороидальным вариаторам. Причем не только ведут, но и потихоньку выпускают машины с такими коробками для нужд внутреннего рынка Японии. В Европе подобными конструкциями занимался Rover, до момента возникновения финансовых проблем.

Крутящий момент в тороидальном вариаторе передается через силовые ролики, перекатывающиеся по ведущему и ведомому дискам, имеющим форму тора (отсюда название). Изменяя положение роликов относительно оси дисков, можно менять передаточное отношение трансмиссии. Специалисты уверяют, что для таких вариаторов и 300 Нм крутящего момента — не предел. Впрочем, тороидальные вариаторы принципиально отличаются от клиноременных, поэтому на этом разговор о вариаторах пока закончим. Тем более, что многие автопроизводители усовершенствуют свои АКПП приближая их к вариаторам по плавности переключений и другим параметра. Это привело к так называемому «двойному сцеплению» и АКПП с системой DSG, но это уже материал другой статьи.

История вариатора (бесступенчатой коробки передач)

Вариатор — это оптимальный способ изменения передаточного отношения между силовым агрегатом автомобиля и его колёсами. Новые природоохранные предписания и улучшенная конструкция могут сделать бесступенчатую трансмиссию с ременным приводом системой переключения передач будущего.

Вариатор — бесступенчатая коробка передач с неограниченным количеством передаточных чисел — почти так же стар, как и сам автомобиль. В 1886 году, в Германии, например, пионеры автомобилестроения Даймлер (Daimler) и Бенц (Benz) свой первый автомобиль с бензиновым двигателем оснастили резиновым клиноременным вариатором.

С тех пор было предпринято множество попыток оборудовать автомобили такими автоматическими коробками передач, вспомните, к примеру, британскую тороидальную тягово-роликовою вариаторную систему «Torotrak». Сегодня их аналоги с зубчатой передачей — и ручные, и автоматические — взяли на себя задачу передачи мощности и крутящего момента от двигателя автомобиля колесам. В течение прошлого столетия автомобилестроители и фирмы-поставщики трансмиссий совершенствовали традиционную конструкцию коробки передач и инвестировали огромные денежные суммы в заводы, необходимые для их массового производства.

Несмотря на бесспорное господство коробки передач, автомобильная бесступенчатая трансмиссия (continuously variable transmission — CVT) всё ещё в ходу, и, если верить инженерам нидерландского «Van Doorne’s Transmissie B.V.» («VDT») из Тилбурга — разработчикам современной вариаторной технологии, — её время приближается. Эмери Хендрикс (Emery Hendriks) — генеральный директор научных исследований и разработок компании «Van Doorne» — считает, что для этого много причин, но главным образом две:

  • во-первых, экономия топлива и динамические характеристики, обеспеченные новейшим вариатором, не уступают и даже оставляют позади сегодняшние сложные и дорогостоящие коробки передач, которые, как утверждает Хендрикс, начинают достигать пределов практичности и экономической целесообразности;
  • во-вторых, все более ужесточающиеся правительственные нормативные акты в отношении расхода топлива (требования американского Закона о среднем расходе топлива автомобилями, выпускаемыми корпорацией) и выхлопных газов вынуждают автоинженеров рассмотреть возможность использования высокоэффективных стационарных двигателей, предназначенных работать в ограниченном диапазоне числа оборотов — все в пользу бесступенчатой трансмиссии. В дальнейшем все эти природоохранные предписания, наверно, вынудят разработку транспортных средств с гибридным приводом, использующих разнообразные односкоростные силовые агрегаты — применение бесступенчатой трансмиссии тут как нельзя кстати.

Современная бесступенчатая трансмиссия CVT состоит из многосегментного стального толкающего ремня, который проходит между парой шкивов переменной ширины, чьи внешние поверхности образуют мелкие конусы. Ремень, который включает в себя сотни тонких стальных пластин или элементов, скрепленных стальными пружинящими лентами, перемещается в клиновидных канавках, образованных внешними сторонами конусов. Каждый шкив нажимает на элементы ремня по мере их движения по кругу. Управляемый коленчатым валом входной шкив выталкивает стек элементов в выходной шкив, вызывая его вращение. Данная конфигурация толкающего ремня может передавать крутящий момент, который разорвал бы обычный «тяговый» приводной ремень на кусочки. При необходимости изменения передаточного числа, конусы шкивов гидравлически сдвигаются (раздвигаются), вызывая дальнейший ход ремня от (к) вала, эффективно увеличивая (уменьшая) диаметр шкива. В результате мы получаем плавное переключение передач, «неограниченное» число этих «передач», и потенциально больший диапазон механического преимущества.

Видео. Работа вариатора Audi Multitronic

Несмотря на свою относительную неизвестность, есть несколько признаков того, что вариаторные технологии идут в гору. Большинство американцев с удивлением узнают, что в настоящее время более чем у миллиона малолитражных автомобилей японского и европейского производства, в том числе «Fiat», «Ford», «Nissan», «Subaru», и «Volvo», — под капотом CVT, разработанная «Van Doorne». Используя технологию, лицензированную у «Van Doornе», такие блоки бесступенчатых трансмиссий производятся в основном «Fuji Heavy Industries Ltd.» и предприятием «Ford of Europe» на больших специализированных заводах, расположенных соответственно в Ойзуми (Япония) и Бордо (Франция).

Улучшение топливной экономичности

“Мы думаем, что будущее вариатора в его топливной экономичности”, — заявил Билл фон Шэарденберг (Bill van Schaardenburgh) — менеджер по специальным проектным операциям компании «Ford of Europe», которая инвестировала значительные средства в производство вариаторных технологий. “После долгого и трудного старта, «Ford of Europe» начала производство вариаторов для 16-клапанных моделей двигателей — 1,3-литровых «Fiesta» и 1,6-литровых «Escort»”. По его словам, завод компании «Ford» в Бордо обладает годовой производительностью в 125 тыс. единиц, с возможностью расширения до 150 тыс. штук в год.

Тем временем, «Fuji Heavy Industries» («FHI») продолжает сборку вариаторов, лицензированных «Van Doorne», для «Subaru», «Nissan» и «Fiat» на своем заводе в Ойзуми, который способен производить около 200 тыс. коробок в год. “Мы были убеждены в надежности конструкции и производственного процесса вариаторов”, — сказал Йошиаки Касай (Yoshiaki Kasai), директор «FHI» по проектному планированию.

Особый успех вариатора — небольшой автомобиль «Nissan Micra». «Мы хотели, чтобы «Micra» была удобна для города и комфортна на шоссе. А вариатор тут — естественный выбор», — говорит Мотоя Усами (Motoya Usami), вице-президент по товарно-рыночной стратегии компании «Nissan Europe». — “Мы добавили электронные элементы управления базовой бесступенчатой трансмиссии CVT, в результате чего была создана N-CVT”. Потребительский отклик, как отмечает Усами, был очень позитивен: “После успеха «Micra», «Nissan» обдумывает применение вариатора и на крупных, и на небольших автомобилях”. Например, «AP-X», новый концепт-кар «Nissan», представленный на последнем токийском автосалоне, оснащён вариатором и среднеразмерным двигателем мощностью в 250 л. с.

В то же время, более продвинутые вариаторы для более крупных транспортных средств разрабатываются компаниями «VDT» и «ZF Getriebe» в городе Пассау (Германия), крупнейшими европейскими изготовителями трансмиссий. К примеру, инженеры «Van Doorne» установили вариатор новой конструкции в два минивэна «Chrysler Voyager», которые демонстрируют общее повышение топливной экономичности примерно на 10 % и улучшенные характеристики ускорения на дорожных тестах. Кроме того, у германских «Porsche AG» в Вайссахе, штутгартского предприятия «Robert Bosch» и других компаний в стадии разработки сложные вариаторные системы с электронным управлением, предназначенные для будущих автомобилей.

Вероятно, самым впечатляющим применением таких бесступенчато-регулируемых передач стал гоночный автомобиль c вариатором «Canon-Williams Renault Formula One», который приводится в действие двигателем «Renault V10» мощностью 800 л. с.. Технический директор компании Williams Патрик Хед (Patrick Head) уверен, что этот автомобиль, вероятно, сегодня выигрывал бы гонки, если б изменения правил в середине 1993 года не запретили бы такие «средства помощи водителю» как активную подвеску, трэкшн-контроль и бесступенчатую трансмиссию. Гоночная команда «Williams» в 1990 году начала программу установления бесступенчатой трансмиссии на автомобили «Формулы 1» “для достижения большего числа оборотов двигателя на километр пробега, так что вообще-то мы обеспечили более эффективное использование потенциала мощности двигателя”, — уточнил Хед.

Наконец, по данным прессы автопрома, крупнейший японский автопроизводитель планирует довезти седан, оборудованный вариатором, — по слухам, Honda Civic, — к берегам США в 1996 году.

Если вариаторные технологии столь многообещающи, почему же они не нашли большего применения? Полюбуйтесь хотя бы на далеко не самые восторженные отклики американской общественности на «Subaru Justy», оборудованную вариатором, в конце 1980-х. Хотя неудачу японских машинок на американском рынке можно объяснить другими факторами (помимо инновационной системой передачи мощности), — американские водители, как правило, воспринимают незнакомую бесступенчатую трансмиссию «Justy», как вялую и шумную. К примеру, при старте с места, скорость двигателя этого «Justy» подскочит до относительно высоких постоянных оборотов в минуту, а машина же будет ползти постепенно, «догоняя» легко разгоняемый эластичный двигатель лишь на высоких скоростях. Автоинженеры называют это «эффектом резинки» или «рогатки». Маленькая малолитражка также оставляла общее впечатление о том, что вариаторы пригодны только для небольших автомобилей с небольшими силовыми агрегатами. Немного внимание было уделено тому, что вариатор (CVT) предлагает показатели топливной экономичности и ускорения близкие к обеспеченными дополнительной пятиступенчатой механической коробкой передач.

Научные исследования и разработки

Тот, кто никогда не терял веру в концепцию вариатора — это Хаб ван Дурн (Hub van Doorne), который в 1958 году представил автоматическую бесступенчатую коробку передач («Variomatic CVT»), базирующуюся на двойной резиновой клиноремённой системе, используемой в трансмиссиях тяжелого машиностроения. Сначала их можно было использовать только на маломощных автомобилях, но дальнейшие усовершенствования резиновых клиновых ремней сделали их пригодными для двигателей объемом до 1,4 л. Впервые под маркой «DAF», голландской автомобильной компании, и с 1975 под маркой «Volvo» в Голландии около 1,2 млн. автомобилей были оснащены автоматической бесступенчатой коробкой передач.

В середине 1960-х голландские автомобильные исследователи изучали разработку более компактных вариаторов, которые можно соединить с более мощными двигателями. После анализа был сделан вывод, что металлорёменный вариатор может достичь большей «величины удельной мощности», чем фрикционный привод. Мало того, когда металлический толкающий клиновый ремень сравнили с клиновыми цепями, первый вышел вперёд. В начале 70-х, ван Дурн сформировал расчётно-испытательную инженерную группу (позже известную как «VDT») с целью разработать вариаторную технологию, способную работать с более крупными двигателями, а это означало разработку лучшего приводного ремня — важнейшего компонента бесступенчатой трансмиссии.

В середине 1960-х голландские автомобильные исследователи изучали разработку более компактных вариаторов, которые можно соединить с более мощными двигателями. После анализа был сделан вывод, что металлорёменный вариатор может достичь большей «величины удельной мощности», чем фрикционный привод. Мало того, когда металлический толкающий клиновый ремень сравнили с клиновыми цепями, первый вышел вперёд. В начале 70-х, ван Дурн сформировал расчётно-испытательную инженерную группу (позже известную как «VDT») с целью разработать вариаторную технологию, способную работать с более крупными двигателями, а это означало разработку лучшего приводного ремня — важнейшего компонента бесступенчатой трансмиссии.

Интересно, что принцип стального толкающего ремня был открыт случайно. Цитируем Эмери Хендрикса: “Инженеры начали с ременной конструкции, состоящей из тонких стальных лент-хомутиков, но они были так сильно загружены шкивами, что прогибались”. Он говорит, что следующим шагом было добавление подвижных опор, которые предотвращали сгибание лент. После некоторых первоначальных испытаний “инженеры выяснили, что опорные блоки передавали крутящий момент, толкая друг друга по контуру шкивов”.

Получившийся толкающий клиновый ремень состоял из нескольких тонких стальных стяжных хомутиков, соединяющих V-образные блоки. Во избежание трения общее допустимое отклонение от стандартного размера у этих лент было очень ограничено. Эти блоки толщиной от 3 до 6 миллиметров могли свободно перемещаться по ленте, подталкивать друг друга, тем самым, передавая крутящий момент. Осевые валики прикрепляли эти ленты-хомутики к блокам. К сожалению, высокая точность механической обработки, необходимая для контакта поверхностей, сделала эту толкательную систему дорогой.

В 1978 году, «VDT» начала маркетинговое апробирование толкательно-вариаторной системы на двухстах «Fiat Ritmo/Strada» (с 1,5-литровым двигателем), имеющих центробежное сцепление и передаточное число равное 4.

Позже, было разработано более продвинутое и более дешёвое ременное устройство, работающее по тому же принципу механической передачи толчка. Инженеры «VDT» заменили блоки с жёлобами V-образного профиля тонкими клиновидными элементами, насаженными на 2 ряда тонких металлических лент, которые входят в пазы по бокам элементов. Этот так называемый «стандартный ремень» состоит примерно из 300 элементов шириной в 24 мм и толщиной 2—2,2 мм, а также двух рядов с 10 лентами в каждом. Многослойные ровные стальные ленты предоставляют силу предварительного натяжения, направляющую элементы на прямые участки дорожек ремня. Ленты передают немного крутящего момента, оставляя эту задачу стеку элементов. V-образные желобки шкивов из поверхностно-упрочнённой стали, по которым проходит ремень, образуют угол в 11 градусов.

По сути, новый клиноэлементный ремень — бесконечная вереница тонких, металлических пластин трапециевидной формы, фиксируемых осевой силой, которая производиться гидравлическим давлением, действующем на направляющие ролики. По мере растяжения лент, данные элементы передают крутящий момент, подталкивая друг друга. Таким образом, благодаря контактному нажатию между элементами и шкивами, входной крутящий момент можно преобразовать в силы трения в поперечном направлении. Сумма сил трения вызывает поперечные нагрузки, возникающие при боковых толчках, в стеке элементов, которые передают крутящий момент от ведущего шкива ведомому. В ведомом шкиве боковые нагрузки преобразуются в выходной крутящий момент. «Данные элементы подаются от ведущего шкива ведомому по ряду хомутов с предварительным натягом», — разъяснил Хендрикс. «Преимущество такого типа ременной конструкции состоит в том, что расстояние между элементами (так называемый «питч») очень мало, в результате чего достигается низкий уровень шума».

Обычно два клиновидных многороликовых блока — конусы, вершины которых лежат на осевой линии блоков. Когда оба многороликовых блока переместятся в сторону оси на одинаковое расстояние в противоположных направлениях, и то же самое произойдет с другим роликом, но в противоположном направлении, клиновой ремень сместится на иной радиус. Инженеры «VDT» выбрали не такую — менее тщательно продуманную — конструкцию, в которой 2 поперечно расположенных многороликовых блока, закреплены на своих валах в осевом направлении, тогда как остальные могут перемещаться. Ремень выстраивается точно в отношении скоростей 1:1, но при других параметрах возникает некоторое смещение. Чтобы это отклонение не доставило неприятностей, данные клиновидные направляющие ролики нужно сделать слегка выпуклыми, что позволит удержать ремень в устойчивом положении.

Две различные схемы размещения CVT для поперечно расположенных двигателей были разработаны фирмой «VDT» (или в сотрудничестве с ней). В таких системах используется клиноэлементный ремень, а диапазон передаточного отношения у них в районе 5. Бельгийские «Ford» и «VCST» («Vehicle Components St. Truiden», бывший «Volvo Car St. Truiden») используют модель «З811 СVT» с планетарной передачей для переключения переднего\заднего хода в сочетании с двумя многодисковыми муфтами сцепления, работающими в масле. У версии «FHI» (модель «P821») есть магнитопорошковое сцепление с электронным управлением.

Производство важнейших компонентов

Дик Сибелт (Dick Siebelt), менеджер по ременной продукции и технологическим процессам подчеркивает, что хотя «Van Doorne» и предоставляет лицензии на свои вариаторные технологии другим фирмам, она делает важнейший компонент системы — ремень — сама. Для изготовления ременных хомутов или лент, листы из стали с высокой усталостной прочностью закатываются в трубы и разрезаются на петли в процессе продольной резки. Затем эти петельки растягиваются до нужных размеров путем прокатки, после чего ленты подвергаются отжигу для снижения внутренних остаточных напряжений, точно обрабатываются до заданного размера, и закаляются, после чего азотируются для упрочнения поверхности. Далее следуют заключительные измерения, и ленты объединяются в подобранный комплект.

Сибелт заметил, что элементы с малыми допусками изготовляются с использованием методов аналогичных тем, которые применяются для производства высокоскоростных зубчатых передач или роликовых подшипников. Размерная точность элементов из стали для зубчатых колёс, должна быть выверена до микрона. Для этого сначала вырезают высокоточную заготовку, после чего они закаляются, зачищаются и подвергаются обдувке металлической дробью. На этом этапе они проходят сложную сортировку и отбор, чтобы соответствовать элементам аналогичных размеров.

“Критический размер — это высота той опоры, где проходят ленты”, — говорит Хендрикс. — “Ввиду фрикционных свойств важно иметь гладкую поверхность, поэтому внутренняя поверхность шлифуется. Все элементы должны поддерживать ленты, сохраняя одинаковую схему распределения нагрузки, иначе возникнут местные перегрузки”.

Норт Либрэнд (Nort Liebrand) — заместитель директора-распорядителя «VDT» — отметил, что целями совершенствования процессов массового производства толкающего ремня были повышение качества, расширение применения и снижение затрат. Также, он добавил, что уже произошло довольно «замечательное» уменьшение затрат, поскольку цена системы сократилась вдвое за прошлые шесть лет. Либрэнд прибавил, что ожидания компании дальнейшего на 30—40 % понижения цен в течение следующих пяти лет весьма реалистичны.

Вариаторы следующего поколения

Вариаторная система последнего слова техники под названием «модель P884», была установлена в два 3,3-литровых минивэна «Chrysler Voyager», которые продемонстрировали данные по топливной экономичности процентов на 10 лучше, чем аналогичные автомобили, оснащённые 4-ступенчатой автоматической коробкой переключения передач, а также улучшение на 1 секунду в ускорении с 0 до 62 миль в час (около 99,8 км/ч). Трансмиссия «P884» с максимальным диапазоном передаточного отношения в 5,8 оборудована системой с толкающим ремнём в 30 мм шириной и 1,5 мм толщиной, способной работать при крутящем моменте до 300 Н∙м. Хендрикс признается, что вариаторы «Voyager»’а отчасти продиктованы желанием продемонстрировать автопроизводителям высокие способности по передаче крутящего момента у бесступенчатой трансмиссии. Инженеры «Van Doorne» были уверены в этом результате, потому что десятилетие назад они опробовали 40-миллиметровый ремень на 16-тонном грузовике, который мог поддержать максимальный крутящий момент 400 Н∙м. Хендрикс сообщает, что ещё у «P884» есть полное электронное управление передаточным числом и линейным давлением, блокируемый гидротрансформатор крутящего момента, а также шиберный насос, управляемый по объёму и потоку. Он объяснил некоторые доводы инженеров «VDT» в пользу таких доработок системы:

  • Гидротрансформатор — гидромуфта, которая смягчает ударные нагрузки трансмиссии — с ограниченным повышением крутящего момента и блокировочной муфтой на электронном управлении, обеспечивает лучшие характеристики набора скорости при начале движения, а также больший диапазон передаточных чисел. Увеличенное передаточное отношение способствует снижению расхода топлива, а гидротрансформатор оставляет набор скорости при трогании с места адекватным вкусу американских водителей. Блокировочная муфта с электронным управлением блокирует закрытие сцепления на низких скоростях, в зависимости от условий движения. Таким образом, ненужных потерь мощности, вызванных «открытым» трансформатором, удается избежать.
  • Гидравлическое линейное давление важно для обеспечения достаточной осевой нагрузки на систему шкивов во избежание проскальзывания ремня. Чрезмерно высокий уровень давления стал бы причиной потерь мощности на толкающем ремне и насосе. Хендрикс соглашается, что в идеале, хотелось бы, чтобы система работала как раз на пределах проскальзывания. В связи с неожиданными динамическими условиями при езде, должен быть добавлен запас прочности. Специальный датчик управляет необходимым давлением в трубопроводе.
  • Вариаторные системы управления оперируют частотой вращения двигателя. Более независимое отношение между скоростью вращения двигателя и скоростью транспортного средства в вариаторе по сравнению с другими типами трансмиссий позволит работать двигателю при более постоянных условиях или сохранять оптимальный режим при изменении условий движения. Свобода выбора различных отношений между положением дроссельной заслонки и частотой вращения двигателя предоставляет возможность оптимизации расхода топлива, уровня выбросов, характеристик и удобства вождения.

Зигфрид Голль, руководитель отдела трансмиссий для легковых автомобилей компании «ZF» напоминает, что аналогичный подход был проявлен инженерами «ZF» при разработке их передовых бесступенчатых трансмиссий для среднеразмерных легковых автомобилей. Он рассказывает, что за последние несколько лет, «ZF» инвестировала более 50 миллионов немецких марок в разработку и сборку опытных образцов бесступенчато-регулируемой автоматической коробки передач «ZF-ECOtronic CVT», для автомобилей с 1,5—2,5-литровыми двигателями — значительной части европейского рынка. «CFT 20 E ZF-Ecotronic» — система с электронным управлением, оборудованная гидротрансформатором, насосом с управлением по объёму и потоку, а также электрогидравлическим блоком управления — может работать при крутящем моменте в 210 Н∙м и требует на 10 % меньше топлива, чем обычные автоматы. “Опытные образцы нам нужны были, чтобы убедить автопроизводителей”, — пояснил Голль. План компании состоит в том, чтобы продавать блоки CVT по цене 4-ступенчатой автоматической коробки передач, стремясь к числу продаж в 200 тыс. и более в год. “Мы ведем переговоры с большинством европейских автомобилестроителей, однако никаких решений принято не было. Мы планируем начать серийное производство в 1997—98 году”.

Стратегии в области электронного управления

Прочие фирмы сосредоточены на усовершенствовании элементов управления для вариаторов следующего поколения. «Интеллектуальная» автоматическая коробка передач, предоставляющая выбор между удобным автоматическим и активным ручным переключением передач «Tiptronic» компании «Porsche» и система «Mastershift» производства «Bosch» — примеры средств управления коробкой передач, которые реагируют на желание водителей и приспосабливаются к их поведению. В настоящее время механическая часть — лимитирующий фактор, ввиду ограниченного диапазона передаточных отношений и постоянного количества передаточных чисел. Идея, лежащая в основе системы «Bosch Mastershift» — связь через системную шину всех подсистем, влияющих на расход топлива, в том числе электронное управление коробкой передач, блоки электронного управления двигателем и электронного управления положением дроссельной заслонки. С «Mastershift», все функции активируются особым уровнем ускорения или замедления по желанию водителя. Система распознает это желание по изменению положения педали газа, преобразующегося в электрические сигналы. На основе этих данных электронный блок управления и соответствующее программное обеспечение рассчитывает мощность двигателя и лучшее передаточное число, необходимые для данного манёвра. Благодаря особой «нечёткой» логике управления с высказываниями не только «истина» и «ложь», но и с любыми промежуточными, эта система может приспособить выбор передаточных отношений к стилю водителя, а также текущей обстановке на дороге и условиям движения.

«VDT» и «Bosch» сотрудничают с «Porsche» в разработке «CVT» версии «Tiptronic», известного как «CVTip». С помощью этой системы, переключения вниз и вверх происходят под влиянием дополнительных входных сигналов от системы датчиков боковой составляющей ускорения для обеспечения более спортивных характеристик.

“Вариатор обеспечивает оптимальное управление при различных обстоятельствах”, — заявил Макс Уэлти (Max Welty), директор гоночного отдела «Porsche». — “Это особенно важно для спортивных автомобилей. Для идеального сочетания комфорта и спортивности, Porsche разработала стратегию в области управления CVTip”.

“Вариатор даёт новые возможности”, — продолжает Уэлти. — “Он позволяет вам ехать и ускоряться, постоянно задействуя полную мощность. Мы считаем, что вариатор предлагает лучшую возможность разрешения конфликта между большей мощностью и экономией топлива. Я убеждён, что будущее за вариатором, — не только в гоночных автомобилях, а и в серийных моделях тоже”.

Карл-Хайнц Штель (Karl-Heinz Stehle) — менеджер по разработкам в области трансмиссий германского центра «R&D» компании «Porsche» в Вайссахе — подтверждает это мнение: “Наша система «CVTip» — сознательно созданный инструмент на рынке, чтобы познакомить клиентов с новой технологией. Большая подготовительная работа подтвердила наши предположения о вариаторе и полностью оправдала все наши ожидания”.

Вариатор R&D

Хендрикс сообщает, что текущие исследования в «Van Doorne» направлены на совершенствование характеристик набора скорости и комфорта при начале движения, увеличение КПД при частичной нагрузке и, следовательно, снижении расхода топлива, особенно в городском цикле, а также расширение выбора режимов вождения. В конечном счёте, «VDT» занимается изучением того, как сделать так, чтобы у бесступенчатой трансмиссии диапазон передаточного отношения был больше 6, что поможет сравнять её с 8-ступенчатой коробкой передач.

Он делает вывод, что интеграция управления двигателем и бесступенчатой трансмиссией откроет окно к управлению приводом и оптимизации сочетания «двигатель-вариатор». Все увеличивающаяся сложность и стоимость современных управляемых электроникой автомобильных двигателей также представляется нам стимулом к интегрированному дизайну привода, оборудованному вариатором и стационарным силовым агрегатом. Наконец, в более отдаленном будущем, по оценкам «VDT» возможно в 2000 году, есть вероятность использования бесступенчатых трансмиссий в гибридных автомобилях с газотурбинным, электрическим или комбинированным инерционным (маховичным) приводом.

Вариатор (CVT)

Существует большое количество работоспособных конструкций вариаторов, однако в автомобилестроении нашли применение только клиноременный и тороидный.

Вариатор — (от лат. variātor «изменитель») автоматическая трансмиссия, способная плавно изменять передаточное отношение в некотором диапазоне. Неформальное название – вариаторная коробка передач или АКПП вариатор.

CVT — общепризнанная мировая аббревиатура вариатора от английского continuously variable transmission (в переводе – постоянно изменяющаяся трансмиссия).

Рис. Современный клиноременный вариатор

В настоящий момент наибольшее распространение получил клиноременный вариатор. Впервые клиноременный вариатор «Variomatic CVT» был представлен в 1958 году на легковом автомобиле «DAF». Его приемник вариатор «Transmatic» с 1984 года начал устанавливаться на автомобили «Fiat» и «Ford». Клиноременный вариатор – это стандартная автоматическая трансмиссия для множества автопроизводителей, выпускаемая под собственными названиями:

  • «Autotronic» от «Mercedes-Benz»;
  • «Ecotronic», «Durashift CVT» от «Ford»;
  • «Lineartronic» от «Subaru»;
  • «Multidrive» от «Toyota»;
  • «Multimatic» от «Honda»;
  • «Multitronic» от «Audi»;
  • «Xtronic», «Hyper» от Nissan.

Клиноременные вариаторы также устанавливаются и на некоторые модели автомобилей «Chrysler» («Dodge», «Jeep»), «Fiat», «Mini», «Mitsubishi», «Opel», «Peugeot» и др. Помимо этого аналоги бесступенчатой трансмиссии «Variomatic» используются в современных мотороллерах (скутерах), являясь их стандартным элементом примерно с 80-х годов XX века. Вариатор ставят на скутеры с наиболее ходовыми объемами двигателей (50, 70 и 125 см3) таких компаний как «Malossi», «Polini», «Doppler» и др.

Наиболее известный тороидный вариатор выпускает компания «Nissan» под именем «Extroid».

Устройство вариатора

Вариатор как коробка передач включает в себя следующие элементы:

  • механизм, передающий крутящий момента и разъединяющий коробку передач и двигатель (нейтральное положение);
  • собственно вариатор;
  • механизм, обеспечивающий движение задним ходом (реверс);
  • блок управления.

Для передачи крутящего момента и разъединения вариатора и двигателя могут быть использованы:

  • центробежное автоматическое сцепление («Transmatic»);
  • электромагнитное сцепление с электронным управлением ( «Hyper»);
  • многодисковое мокрое сцепление с электронным управлением ( «Multitronic», «Multimatic»);
  • гидротрансформатор («Autotronic», «Ecotronic», «Extroid», «Lineartronic», «Multidrive», «Xtronic»).

Последний вариант является самым популярным, потому что гидратрансформатор обеспечивает плавность работы механизма при передаче крутящего момента, следствием чего является больший ресурс вариатора.

В автомобильных вариаторных коробках передач применяют электронное управление, основными функциями которого являются:

  • осуществление изменения передаточного отношения вариатора в соответствии с режимами работы двигателя;
  • управление гидротрансформатором/сцеплением;
  • обеспечение работы планетарного редуктора.

Непосредственное же управление вариатором водитель производит при помощи рычага селектора. Режимы управления аналогичны режимам обычной АКПП. Также в CVT может быть реализована возможность выбора фиксированных передаточных отношений (аналог функции «Tiptronic»). Наличие данной функции в первую очередь позволяет преодолеть негативное восприятие многими водителями постоянной скорости вращения двигателя при разгоне. У ряда производителей данная функция называется иначе: «Sportronic» у «Mitsubishi», «Autostick» у Chrysler.

Конструкция клиноременного вариатора

Клиноременный вариатор состоит, как правило, из одной, реже двух ременных передач. Передача включает два шкива, соединенные клиновидным ремнем. Шкив образуют два конических диска, которые могут сдвигаться или раздвигаться, обеспечивая тем самым изменение диаметра шкива. Для сближения конусов используется гидравлическое давление, центробежная сила, усилие пружин. Конические диски имеют угол наклона около 20°, который обеспечивается перемещение ремня по поверхности шкива с наименьшим сопротивлением.

Рис. Схема работы клиноременного вариатора

На ранних клиноременных вариаторах ремень был выполнен из резины (как на современных скутерах), что делало его недолговечным (примерно 50000 км пробега) и недостаточно гибким (радиус изгиба не менее 90 мм). Плохая гибкость приводила в итоге узкому диапазону регулирования. Подавляющая часть современных вариаторных КПП применяют гибкий клиновидный толкающий ремень из нескольких стальных лент (порядка 10 – 12) и связанных с ними фасонных пластин в виде «бабочки». Передача крутящего момента осуществляется за счет сил трения между шкивами и боковой поверхностью ремня. Такая конструкция даёт высокую прочность, долговечность, гибкость (минимальный радиус изгиба 30 мм) и низкий уровень шума. Именно появление металлического клиновидного ремня позволило широко использовать вариатор на автомобилях, так как он мог передавать значительный крутящий момент.

Рис. Цепь вариатора

Другой вариант – это использовать металлическая цепь («Multitronic», «Lineartronic»). Такие CVT называют клиноцепными (их считают подклассом клиноременных). Металлическая цепь в таком вариаторе состоит из тонких пластин соединенных осями, что обеспечивает лучшую гибкость (радиус изгиба около 25 мм). Крутящий момент в отличие от клиноременного вариатора передается торцевой поверхностью цепи при ее точечном контакте с коническими дисками. В местах контакта возникают высокие напряжения, поэтому диски изготавливаю из высокопрочной подшипниковой стали. Клиноцепной вариатор обладает лучшим КПД в сравнении с другими CVT.

Конструкция автомобильных CVT не способна обеспечить реверсивное движение. Чтобы дать возможность автомобилю двигаться задним ходом в вариаторных коробках передач применяются дополнительные механизмы. Таким механизмом чаще всего выступает планетарный редуктор, который устроен и имеет принцип работы аналогичный редуктору автоматической коробки передач.

Некоторые особенности тороидного вариатора

Рис. Тороидный вариатор

Тороидный вариатор состоит из двух соосных дисков с тороидными поверхностями, между которыми зажаты ролики. Один диск является ведущим, а другой — ведомым. Изменять передаточное отношение в таком вариаторе осуществляют, меняя положения роликов. Передача крутящего момента обеспечивается только силами трения между тороидными поверхностями дисков и роликами. Часто одна тороидная коробка состоит из двух тороидных передач.

Схема работы тороидного вариатора

Принцип работы вариатора на автомобиле

Принцип работы вариатора на автомобиле заключается в изменении диаметров шкивов (для клиноременного вариатора) или положения роликов зависимости от режима работы двигателя. Диаметр шкива изменяется с помощью специального привода. В начале движения автомобиля обеспечивается максимальное передаточное отношение. В этом случае, если вариатор клиноременный, то ведущий шкив вариатора имеет наименьший диаметр – конические диски максимально разжаты, а ведомый шкив при этом имеет максимальный диаметр – конические диски максимально сжаты. Если вариатор тороидный, то ролики повернуты к ведущему диску с тороидной поверхностью. При увеличении числа оборотов двигателя диаметр ведущего шкива увеличивается, а ведомого – уменьшается, соответственно и уменьшается передаточное число. В тороидном вариаторе происходит поворот роликов к ведомому диску. При дальнейшем разгоне вариатор поддерживает оптимальные обороты двигателя, при которых реализуется максимальная экономия топлива и наилучшая динамика автомобиля.

Преимущества и недостатки вариатора

Преимущества:

  • Главное преимущество вариатора по сравнению с другими коробками передач заключается в эффективном использовании мощности двигателя, благодаря оптимальному согласованию нагрузки на автомобиль с оборотами коленчатого вала двигателя, тем самым достигается высокая экономичность.
  • Плавное изменение крутящего момента, из-за отсутствия рывков при переключении передач, обеспечивает высокий уровень комфорта при передвижении на автомобиле с вариатором.

Недостатки:

  • Ввиду ограничений по передаваемой мощности вариаторы на сегодняшний день применяются только на легковых автомобилях, но диапазон их использования вследствие технического прогресса постоянно расширяется.
  • Другой недостаток CVT заключается в достаточно высокой технической и технологической сложности конструкции, что сказывается на стоимости производства и обслуживания.
  • Считается, что вариатор имеет пониженный срок службы в сравнении с другими автоматическими автомобильными трансмиссиями.

Вариатор или автомат (CVT or Automatic Transmission). Что лучше, что надежнее



Что же ребята сегодня долгожданное видео, вариатор или автомат. Будем думать — что лучше и что надежнее! Я так думаю после этого видео у вас встанет все на свои полочки в голове.

Как правильно заменить масло в автомате и вариаторе

Правильные действия при замене масла в автомате и вариаторе. Продли жизнь своей коробке передач.

Как устроен вариатор. Как он работает?

Многих пугает вариатор, но что это, как он устроен? Вы увидите на примере коробка К310 Тайоты Авенсис устройство вариатора, узнаете принцип его работы и причины выхода из строя.

Клиноременной вариатор

Передачи такого типа применяются в основном на снегоходах, мотоциклах, легковых автомобилях, причем доля автомобилей с клиноременным вариатором в мировом выпуске составляла по некоторым данным около 2% в 2003 г. Схема клиноременного вариатора, не имеющего внешней САУ, приведена на рис. б. На ведущем валу 10 установлен ведущий шкив 11, половина которого может перемещаться вдоль вала. Такой же шкив 16 установлен на ведомом валу 17. Крутящий момент между шкивами передается ремнем 15.

Схемы фрикционных бесступенчатых передач

Рис. Схемы фрикционных бесступенчатых передач:
а — торового вариатора; б — клиноременного вариатора с внутренней САУ; 1 — вал вариатора: 2, 14, 18 — пружины; 3, 17 — ведомые валы; 4, 6 — ведущие диски; 5 — ведомый диск; 7 — нагружающее устройство; 8, 10 — ведущие валы; 9 — ролики; 11 — ведущий шкив; 12 — грузы центробежного регулятора; 13 — полость с разрежением; 15 — ремень; 16 — ведомый шкив

При разгоне автомобиля на ведущий шкив действуют силы от грузов 12 центробежного регулятора и от разрежения в полости 13, соединенной с впускным коллектором двигателя. Сумма этих сил, преодолевая силу пружин 14 и 18, сдвигает половины ведущего шкива и раздвигает половины ведомого шкива. Так происходит бесступенчатое изменение передаточного числа, причем обычно так же, как и у горового вариатора, симметрично относительно единицы.

Введение центробежного регулятора, создающего значительное усилие, сдвигающее ведущий шкив и тем самым уменьшающее передаточное число с увеличением скорости вращения ведущего шкива, превращает несаморегулируемый клиноременный вариатор в саморегулируемую (например, ГДТ) передачу. Такое решение (без внешней САУ) позволяет создать относительно простую бесступенчатую передачу, подучившую широкое применение на снегоходах (в том числе «Буран» Рыбинского завода) и мотоциклах, а также на легковых автомобилях особо малого класса фирмы «ДАФ», Голландия, а затем и «Вольво» (модель 343), Швеция.

Часто на снегоходах и мотоциклах такой клинорсмснный вариатор используется без сцепления, а функции сцепления при трогании с места выполняет ремень. На режиме холостого хода двигателя ремень свободно лежит на подшипнике ведущего вала. При увеличении угловой скорости вала двигателя ремень, сжимаемый ведущим шкивом, передает тяговую силу на ведомый шкив, а значит и на ведущие колеса или гусеницу. Конечно, пробуксовывание боковых поверхностей ремня относительно вращающихся дисков ведущего шкива приводит к значительным износам и сокращению срока службы ремня.

Кроме этого недостатка, не имеющегося у легковых автомобилей, использующих сцепление или ГДТ, клиноременному вариатору без внешней САУ присуще значительное недоиспользование поля передаточных чисел. В частности, без внешней САУ невозможен быстрый выход на режим максимальной мощности при максимальном передаточном числе, что приводит к более медленному разгону. В снегоходах и мотоциклах этот недостаток частично устраняется использованием специальной конструкции центробежного регулятора, обеспечивающей получение обратной прозрачности. При этом на ведущий шкив некоторое время передается крутящий момент, намного больший, чем максимальный момент двигателя.

У многих современных вариаторов оба шкива имеют гидроцилиндры и сдвигаются-раздвигаются давлением жидкости, изменяемым внешней САУ с электронным блоком.

При этом поле передаточных чисел используется в значительно более широких пределах. Так, при полной подаче топлива разгон вначале происходит при наибольшем передаточном числе клиноременного вариатора, но при приближении к максимальной частоте вращения двигателя САУ обеспечивает плавное уменьшение передаточною числа. На максимальную частоту вращения коленчатого вала двигатель выходит не при 29 км/ч, а при 80 км/ч. Это приводит к существенному снижению шумности двигателя в процессе разгона автомобиля при сохранении высокой тяговой силы, поскольку с уменьшением передаточного числа клиноременного вариатора уменьшается коэффициент учета вращающихся масс. В соответствии с современными представлениями используется также зона повышающих передач, обеспечивающих улучшение топливной экономичности автомобиля.

Трансмиссия с клиноременным вариатором фирмы «Ниссан»

Рис. Трансмиссия с клиноременным вариатором фирмы «Ниссан» (а) и металлический ремень VDT (б):
1 — гидроцилиндр перемещения ведущего шкива; 2— фрикцион переднего хода; 3 — фрикцион заднего хода; 4 — гидротрансформатор; 5 — насос САУ; 6 — гидроцилиндр перемещения ведомого шкива; 7 — двухступенчатая главная передача; 8 — дифференциал; 9 — металлические звенья; 10 — стальные многослойные ленты; 11 — поверхность контакта с конусной поверхностью шкива

На рисунке а представлена коробка передач с клиноременным вариатором фирмы «Ниссан». В этой конструкции, как и в ГМП типа ГСК, при трогании с места и движении передним ходом сначала включается фрикцион переднего хода 2, а затем при увеличении подачи топлива происходит троганис с места, причем работа буксования происходит в ГДТ. У ведущего и ведомого шкивов установлены гидроцилиндры 1 и 6 для сдвигания-раздвигания шкивов.

Наружные диаметры гидроцилиндров увеличены до наружных диаметров шкивов, что позволяет применять сравнительно невысокие давления для перемещения шкивов. Применение внешней САУ с электронным блоком (не показаны на рис. а) позволяет значительно более полно, чем в конструкциях без внешней САУ, использовать иоле передаточных чисел.

Конструкции вариаторов с раздвигаемыми шкивами продолжают совершенствоваться, в частности, в направлении увеличения диапазона передаточных чисел. Так, например, фирма «Лук» наладила выпуск вариатора «Мультитрон и к» с гибким элементом в виде многорядной цепи фирмы «ПИВ» вместо ремня. Этот вариатор имеет КПД 88…93%, диапазон передаточных чисел — 6,0…6,2.

Ранее применялись резинокордовые ремни. Они имели трапецеидальное сечение и выполнялись зубчатыми для большей гибкости при высокой поперечной жесткости. Они работали на растяжение, передавая и силу предварительного натяжения и силу тяги, но имели низкие износостойкость и прочность. Обычно в современных автомобильных клиноременных вариаторах применяют металлический ремень фирмы «Ван Дорн Трансмишен» (VDT). Ремень состоит (рис. б) из двух многослойных металлических лент 10, на которые вплотную друг к другу установлены металлические звенья 9 особой формы. Ленты работают на растяжение, воспринимая силу предварительного натяжения, а звенья работают на сжатие, передавая силу тяги. КПД такого вариатора составляет 85…90%, диапазон передаточных чисел — 5,0…5,8.

Бесступенчатые коробки передач. Вариатор

Общепринятые сегодня ступенчатые коробки передач имеют врожденный, заложенный в них конструктивно недостаток: набор фиксированных передаточных чисел лишь усредненно может отражать весь спектр постоянно меняющихся внешних условий. Даже при простом прямолинейном разгоне по ровной дороге на каждой из ступеней двигателю сначала приходится преодолевать внешнюю нагрузку (в данном примере – силу инерции), передача может оказаться более высокой, чем нужно, затем передача оказывается уже более низкой, чем требуется. «Точность» передач можно повышать, увеличивая количество ступеней в коробке, что ограничено прежде всего физически. К тому же при этом от «усредненности» избавиться все равно не удастся. Поэтому для постоянного «попадания в нужный момент» передаточное число должно не «скакать», а «плавать», для чего ступени из трансмиссии необходимо исключить.

Бесступенчатое изменение передаточного числа обеспечивает гидротрансформатор. Но диапазон его работы довольно узок, и для применения на автомобиле к нему приходится добавлять ступенчатую коробку передач.

Недостатков вышеперечисленных устройств лишен вариатор – в основе своей механическая, а поэтому работающая с небольшими потерями бесступенчатая трансмиссия с внешним управлением, которое позволяет автоматически плавно изменять передаточное число, выбирая наиболее оптимальное согласно внешней нагрузке и оборотам двигателя, тем самым, давая возможность максимально эффективно использовать его мощность. В технике существует множество различных конструкций такого типа, но на автомобиле получили распространение два вида вариаторов – клиноременной и тороидный.

Бесступенчатые передачи могут быть:

  • механическими (ременными или фрикционными)
  • гидравлическими
  • электрическими

Клиноременной вариатор состоит из нескольких (как правило, одной — двух) ременных передач, где шкивы образованы коническими дисками, за счет сдвигания и раздвигания которых изменяются диаметр шкивов и, соответственно, передаточное число.
Принцип работы вариаторной передачи

Рис. Принцип работы вариаторной передачи:
1 – ведущий привод; 2 – набор первичных аксиально перемещаемых дисков; 3 – набор вторичных аксиально перемещаемых дисков; 4 – ведомый привод; 5 – передающая цепь

Для трогания автомобиля с места используются обычное сцепление или небольшой гидротрансформатор, который вскоре после начала движения блокируется. Управление дисками шкивов осуществляет электронная система из сервоприводов, блока управления и датчиков.

Разные фирмы разработали каждая свою конструкцию клиноременного вариатора, так на Audi в трансмиссии Multitronic вместо ремня применяют цепь, а Honda ставит набранный из металлических пластин ремень, но принцип от этого не меняется.

Одной из первых вариаторных передач, нашедших практическое применение, была клиноременная передача, устанавливаемая на шведских автомобилях «Вольво».

Клиноременная передача

Вариатор на автомобиле «Вольво» установлен в трансмиссии между главной передачей и ведущими колесами. Изменение передаточного числа в вариаторе происходит автоматически за счет изменения диаметров шкивов. Ведущая шестерня 1 главной передачи находится в зацеплении с двумя шестернями 2 и 5, свободно сидящими на валу 3. Шестерни могут соединяться с валом через кулачковую муфту 4, при включении левой шестерни происходит движение автомобиля вперед, правой – задний ход.

На обоих концах поперечного вала 3 закреплены ведущие шкивы вариатора 6. Левая часть шкива закреплена на валу жестко, правая может перемещаться вдоль оси вала. Подвижный правый шкив соединен с грузиками центробежного регулятора 11 и с поршнем цилиндра, связанного с впускным трубопроводом двигателя. Ведомый шкив 8 также состоит из двух частей, при этом правая неподвижна на ведомом валу, а левая подвижна в осевом направлении и нагружена пружиной 9. Ведомый вал вариатора через редуктор связан с ведущими колесами автомобиля.

Работает вариатор следующим образом. При малой частоте вращения коленчатого вала (начало трогания автомобиля) пружина 9 выжимает ремень на ведомом шкиве на больший радиус. Вследствие малой частоты вращения и  сдвинутых грузиков регулятора 11 половины 6 ведущего шкива раздвинуты за счет действия пружины 14, и ремень располагается на малом радиусе. Передаточное число наибольшее. По мере разгона автомобиля и увеличения частоты вращения вала 3 увеличивается сила действия центробежного регулятора, которая смещает подвижную часть шкива и увеличивает его рабочий диаметр. Разрежение, создаваемое во впускных трубопроводе двигателя, передается в цилиндр 13, связанный с подвижной частью шкива. При уменьшении нагрузки, когда разрежение во впускном трубопроводе возрастает, рабочий диаметр шкива ведущего увеличивается, уменьшая   передаточное   число.   Таким   образом, осуществляется автоматическое изменение передаточного числа вариатора в зависимости от скорости движения и нагрузки двигателя.
Клиноременная передача

Рис. Клиноременная передача:
1– ведущая шестерня; 2, 5 – шестерни; 3 – вал; 4 – кулачковая муфта; 6 – ведущий шкив вариатора; 7 – ремень; 8 – ведомый шкив; 9, 12, 14 – пружины; 10 – цилиндрическая передача; 11 – центробежный регулятор;  13 – цилиндр

Бесступенчатые коробки передач с электронным управлением

В результате развития электроники появились бесступенчатые коробки передач с электронным управлением, представителем которых является  коробка передач «Ауди» для модели А6 2.8, оснащенной двигателем мощностью 193 л. с. с крутящим моментом 280 Нм.

Основными элементами бесступенчатой коробки передач автомобиля А6 2.8 являются:

  • механизм включения для начала движения (фрикционы с дисками в масле), ведущий и ведомый шкивы с аксиально перемещаемыми дисками и стальной ремень, предназначенный для передачи мощности
  • система электронно-гидравлического управления коробкой передач
  • узел движения задним ходом
  • главная передача с дифференциалом
    Схема бесступенчатой коробки передач автомобиля Ауди

Рис. Схема бесступенчатой коробки передач автомобиля Ауди:
1 – маховик с встроенным демпфером; 2 – фрикционы для движения задним ходом; 3 – промежуточная передача; 4 – вариатор с цепью; 5 – электронный блок управления коробкой; 6 – гидравлическое управляющее устройство; 7 – гидравлическая система передвижения вариаторов; 8 – фрикционы для движения передним ходом; 9 – планетарный передаточный механизм

Вариатор состоит из ведущего и ведомого конических шкивов с аксиально перемещаемыми дисками, и передающей вращения специальной цепи. На ведущий привод передается вращения от двигателя через промежуточный передаточный механизм, ведомый привод передает крутящий момент на дифференциал. При передачи движения цепь всегда натянута.

Для плавного трогания с места при включения передачи переднего и заднего хода служит многодисковое сцепления включаемое с помощью гидравлики. Изменение направления вращения производится с помощью шестерен планетарного механизма.

Для привода ведомого шкива применяется многорядная стальная цепь, при этом со шкивами контактируют не сегменты ремня, как было в прежних конструкциях, а скошенные торцы соединительных осей звеньев. Чтобы исключить проскальзывание, прижим скошенных торцов осуществляется сложной следящей гидравлической системой, которая создает в каждый момент необходимое давление от 20 до 60 кгс/см2. В результате износ штифтов составляет лишь 0,2 мм за весь срок службы.
Вариаторная цепь

Рис. Вариаторная цепь:
1 – соединительные оси; 2 – звенья; а – вид сверху; б – вид сбоку

Цепь обеспечивает не только передачу значительной нагрузки, но еще и изменение передаточного отношения в диапазоне от 1:2,1 до 1:12,7. Это позволило отказаться от гидротрансформатора, а значит, и от дополнительных потерь мощности.

Управление коробкой передач осуществляется с помощью электронного блока управления. Для принятия определенного решения в блок управления поступает информация от различных датчиков: частоты вращения коленчатого вала двигателя, частоты вращения входного передаточного механизма, положения педали подачи топлива, крутящего момента двигателя, температуры масла в коробке передач.

Электронный блок управления способен распознать по характеру движения педали подачи топлива, какой режим предпочитает водитель – экономичный или спортивный. В последнем случае уже со скорости 60 км/ч вариатор включает режим «овердрайв», то есть занижает передаточное отношение.  При энергичном нажатии педали подачи топлива включается спортивный режим. Блок управления реагирует включением пониженной передачи и на наличие прицепа или крутого подъема, необходимость торможения двигателем. Программа блока управления позволяет работать коробке передач в ручном режиме, когда из памяти извлекаются заранее запрограммированные значения передаточного отношения. В этом случае бесступенчатая коробка действует как шестиступенчатая коробка передач с последовательным переключением.

Ауди с бесступенчатой коробкой передач расходует на 0,9 л/100 км меньше топлива, чем с традиционной автоматической коробкой, и на 0,2 л меньше, чем с механической пятиступенчатой коробкой передач. При этом разгон до 100 км/час занимает соответственно на 1,3 с и на 0,1 с меньше времени.

Тороидный вариатор

К бесступенчатым передачам относится и тороидный вариатор, применяемый в автомобилях японского производства «Глория» и «Скайлайн».
Схема тороидного вариатора

Рис. Схема тороидного вариатора:
а – высшая передача; б – низшая передача; 1 – ведущий диск; 2 – ведомый диск; 3 – промежуточные ролики

Вариатор состоит из соосных дисков ведущего 1, ведомого 2 и промежуточных роликов, передающих момент от одного диска к другому. Один диск является ведущим, а другой – ведомым. Передача крутящего момента обеспечивается силами трения между рабочими поверхностями дисков и роликов. Для изменения передаточного числа меняются положение роликов и их радиусы, по которым ролики обкатывают диски.

В зависимости от угла поворота ролика ведомый диск может вращаться с той же скоростью, что и ведущее (если ролик горизонтален), с большей или меньшей (если ролик поворачивается).

Поскольку все усилие сосредоточено в пятне контакта, то для поворота роликов должны использоваться особые устройства, способные преодолевать силу прижатия ролика к диску (до 3000 Нм). Возможность передачи таких усилий обеспечивается применением высококачественных сталей, особых масел и специальной системой, в которой управляемый электронным блоком управления прецизионный гидравлический механизм перемещает обоймы с роликами вверх или вниз на микроскопическую величину, а далее, из-за возникшего сдвига относительно оси дисков, ролик поворачивается сам.  Кроме того, чтобы раз­грузить детали и уменьшить размеры тороидной коробки передач, в ней работают два вари­атора. При использовании тороидного вариатора в трансмиссии автомобиля так же, как и в случае клиноременного, необходимо обеспечить возможность получения заднего хода и отключения вариатора от двигателя с помощью сцепления. Задний ход обеспечива­ет планетарная передача, а для нейтральной передачи используется гидро­трансформатор.

Для смазки бесступенчатых коробок передач специальное масло с маркировкой CVT, которое не совместимо с маслом ATF, применяемом для традиционных автоматических коробок передач.

Бесступенчатые коробки передач до сих пор не нашли широкого применения из-за некоторых имеющихся в них существенных недостатков по сравнению с механическими ступенчатыми коробками (размер, масса, диапазон преобразования, производственные расходы, к.п.д. коробки передач, компоновочные ограничения).