Как конструкция двигателя может выдерживать огромные мощности?

Как конструкция двигателя может выдерживать огромные мощности?

Чтобы понять, почему для конструкции двигателя не является губительной увеличенная в разумных пределах при помощи турбонагнетателя мощность, необходимо рассмотреть статические нагрузки в двигателе во время его работы. К конструкции двигателя в разные моменты его работы прикладываются два вида статических нагрузок: инерционные и мощностные. Инерционные нагрузки могут быть растягивающими (произведены растягиванием) или сжимающими (произведены сжатием). Мошностная нагрузка может быть только сжимающей. Механизмы воздействия этих нагрузок должны стать понятны читателю как по отдельности, так и в совокупности. Это необходимо для ясного представления, почему турбонагнетатель не убивает кривошипно-шатунный механизм двигателя.

Инерционная нагрузка

Инерционная нагрузка возникает из-за сопротивления предмета ускоренному движению. Чтобы исследовать инерционные нагрузки, удобно разделить цилиндр на верхнюю и нижнюю части. Вообразите две половины, отделенные мнимой линией, называемой серединой хода поршня.

Zavisimost-nagruzok-na-uzly-dvigatelya

Рис. Зависимость нагрузок на узлы двигателя меняет свой характер в трёх характерных взаимных положениях поршня и коленчатого вала.

Вектор ускорения поршня всегда направлен к середине его хода даже при движении вверх или вниз от этой середины. Другими словами, когда поршень выше середины своего хода, он будет всегда ускоряться вниз. Когда он ниже середины хода (даже в мертвой точке), он будет ускоряться вверх. Самые большие ускорения достигается в верхней мертвой точке и нижней мертвой точке, когда поршень фактически останавливается. Когда ускорение самое большое, нагрузки будут самые высокие. Когда поршень проходит через середину своего хода ускорение нулевое, а скорость максимальна.

Величина нагрузок, возникающих при движении поршня, пропорциональна частоте вращения двигателя, возведенной в квадрат. Например, если число оборотов двигателя в минуту увеличено втрое, инерционная нагрузка будет в девять раз большей. Поршень, который двигается (ускоряется) к верхней мертвой точке и затем обратно к середине хода, прикладывает растягивающую инерционную нагрузку к узлу поршень/шатун. Напротив, когда поршень двигается к нижней мертвой точке и затем обратно к середине хода, инерционная нагрузка будет сжимающей. Таким образом, во время нахождения поршня выше середины хода инерционная нагрузка, будет растягивающей, а ниже середины хода — сжимающей. Самое большое растягивающее усилие, приюженное к шатуну — в верхней мертвой точке на ходе выпуска (потому что в верхней мертвой точке в конце такта сжатия ТВС уже горит и создает давление, противодействующее инерционной нагрузке). Самая большая сжимающая нагрузка — в нижней мертвой точке после впуска или рабочего такта.

Эти инерционные нагрузки огромны. В двигателе большого объема, работающем на 7000 оборотов в минуту, в шатуне могут развиваться инерционные нагрузки величиной более, чем 1,8 тонны. (Для наглядности представьте себе микроавтобус, стоящий на вашем шатунном подшипнике.)

Инерционные нагрузки

Рис. Инерционные нагрузки, прикладываемые к шатуну, приближены к синусоидальной зависимости относительно угла поворота коленчатого вала.

Мощностная нагрузка

Мощностная нагрузка возникает от давления сгорающей ТВС, приложенного к поршню. Это сжимающая нагрузка, приложенная к шатуну вследствие того, что горящие газы вынуждают поршень двигаться вниз.

Давление, созданное расширяющимися горячими газами, прикладывает к поршню силу, равную площади сечения цилиндра, помноженной на давление в камере сгорания. Например, шатун в двигателе с площадью сечения цилиндра 64,5 квадратных сантиметра (при диаметре 90 мм) при давлении в камере сгорания более 50 бар, будет испытывать сжимающую мощностную нагрузку в 3,6 тонны.

Особая зависимость инерционных и мощностных нагрузок наиболее интересна в верхней половине рабочего такта. Здесь мы имеем следующую картину: две нагрузки, действующие на шатун, нагружают его в различных направлениях. Помните, что инерционная нагрузка является растягивающей выше середины хода, в то время как мощностная нагрузка в любом случае является сжимающей. Мощностная нагрузка достигает максимума при максимуме крутящего момента, и постепенно снижается при дальнейшем увеличении оборотов двигателя, но вообще всегда больше чем инерционная нагрузка. Разность между этими двумя нагрузками и есть реальная нагрузка на шатун.

Итак, инерционные нагрузки частично компенсируются мощностной нагрузкой. Из вышесказанного, очевидно, что в конце такта выпуска, когда шатун/поршень достигает верхней мертвой точки и не подвергается сопротивлению сжимающихся газов (потому что все клапана открыты), достигается самое высокое растягивающее усилие. Эта нагрузка наиболее разрушительна из всех, потому что растягивающие усилия вызывают усталостное разрушение, в то время как сжимающие усилия к этому не приводят. Поэтому, когда конструктор анализирует напряжения в шатуне и шатунных бол тах, его в наибольшей степени интересуют инерционные нагрузки в верхней и нижней мертвых точках.

Sgorayushhaya-TVS

Рис. Сгорающая ТВС создает сжимающие нагрузки в шатуне.

Obedinennyj-grafik-moshhnostnoj-i-inertsionnoj-nagruzok

Рис. Объединенный график мощностной и инерционной нагрузок. Заметьте, что мощностная и инерционная нагрузка вычитаются друг из друга.

Мысль об удвоении момента двигателя (удвоении мощности при тех же оборотах двигателя) приводит к другой мысли — об удвоении мощностной нагрузки. К счастью это не так. Показать, как мощность можно удвоить без удвоения давления в камере сгорания, проще всего графически. Любые существенные изменения расчетной нагрузки будут основаны на пиковом давлении в камере сгорания. На рисунке видно, что при удвоении количества смеси в камере сгорания, пиковое давление возрастает только приблизительно на 20 %. Имеются две причины для этой непропорциональности.

Во-первьтх, мощность — функция среднего давления по всему рабочему ходу поршня, а не только пикового давления. Среднее давление может быть значи тельно увеличено за счет более высокого давления в середине или в конце хода, в то время как максимум давления существенно не возрастает.

Во-вторых, максимальное давление вообще достигается после сгорания 18-20 % смеси. Если количество смеси удвоено, те же 18-20 % этого количества сгорят при достижении максимального давления. Так как полное давления в камере сгорания состоит из давления сжатия и давления сгоревших газов, невозможно удвоить полное давление, удваивая только одну из его составных частей. (Не иначе, законы физики благосклонны к шатунам и шатунным подшипникам.)

Davlenie-v-tsilindre

Davlenie-v-tsilindre

Рис. Давление в цилиндре как функция угла поворота коленчатого вала при примерно двух атмосферах давления. Заметьте, что у двигателя с турбонаддувом максимальное давление достигается приблизительно при 20″ после ВМТ, когда сгорает около 20% смеси. Даже при высоких давлениях наддува небольшое количество сгоревшей смеси не будет давать результат в виде большого изменениях максимального давления. Когда процесс горения приблизится к завершению, большая плотность смеси может поднимать давление в три-четыре раза при углах поворота коленчатого вала около 90″, поэтому момент на валу при этом может быть вдвое больше.

Тщательное изучение рисунка показывает, что при угле поворота коленчатого вала, приближающегося к 90″, давление в камере сгорания, при работе с наддувом, в три — четыре раза больше. Оно, однако, заметно меньше чем максимальное давление. Поэтому оно не создает разрушающей нагрузки. Часть рабочего хода в районе 90″ — это тот участок, где возникают реальные увеличения мощности двигателя с турбонаддувом. Любой владеющий физикой товарищ, посмотрев на диаграмму, скажет Вам, что область под соответствующими кривыми представляет собой мощность. Таким образом, разность в площади этих двух областей представляет собой увеличение мощности от применения турбонагнетателя. Теперь очевидно, что мы можем удваивать мощность, не удваивая нагрузку на поршень и шатун!

Итак: предшествующее обсуждение показывает, что увеличенное давление в камере сгорания при использовании турбонадцува и увеличившаяся при этом мощностная нагрузка будут иметь довольно умеренное влияние на конструкцию двигателя.

Умеренное увеличение мощностной нагрузки вообще не будет серьезно влиять на конструкцию двигателя.

Поделиться

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *