Электронная система впрыска Мотроник. Устройство и принцип действия

Время на прочтение: 5 минут(ы)

Производительность современных микропроцессоров позволяет осущест­влять управление функциями впрыска топлива и зажигания посредством единого электронного блока управления, благодаря этому снижается стоимость аппара­туры и, кроме того, используется общий источник питания. Реализовать эту рациональную идею стало возможно, т.к. многие из входных сигналов пригодны для регулирования как впрыска, так и зажигания. Использование единого электронного устройства повышает надежность системы управления двигателем и позволяет уменьшить затраты на сборку.

На практике это означает отказ от механического и пневматического регулирования опережения зажигания. Вместо него используется бесконтактная, полностью электронная, управляемая микропроцессором система зажигания, которая функционирует на основе информации, поступающей от индукционного датчика частоты вращения и углового положения коленчатого вала. Микропроцессор элек­тронного блока управления преобразует поступающую информацию в так на­зываемые параметрические поверхности (трехмерные графические характери­стики), которые учитывают действия водителя и нагрузку на двигатель.

Для реализации возможно большего числа функций управления требуется разнообразная входная информация. Одна из разновидностей электронной системы управления, представлена на рисунке:

Схема системы Мотроник с встроенной системой диагностики

Рис. Схема системы Мотроник с встроенной системой диагностики: 1 – адсорбер; 2 – клапан впуска воздуха; 3 – клапан регенерации продувки; 4 – регулятор давления топлива; 5 – форсунка; 6 – регулятор давления; 7 – катушка-свеча зажигания; 8 – датчик фазы; 9 – вспомогательный воздушный насос для подачи дополнительных порций воздуха; 10 – вспомогательный воздушный клапан; 11 – расходомер воздуха; 12 – блок управления; 13 – датчик положения дроссель­ной заслонки; 14 – регулятор холостого хода; 15 – датчик температуры воздуха; 16 – клапан системы рециркуляции отработавших газов; 17 – топливный фильтр; 18 – датчик детонации; 19 – датчик частоты вращения коленчатого вала; 20 – датчик температуры охлаждающей жидкости; 21 – лямбда-зонд (кислородный дат­чик); 22 – аккумуляторная батарея; 23 – диагностический разъем; 24 – диагности­ческая лампочка; 25 – датчик дифференциального давления; 26 – электрический топливный насос в топливном баке

В систему впрыска Мотроник могут поступать следующие данные:

  • включено или выключено зажигание
  • положение распределительного вала
  • частота вращения коленчатого вала
  • скорость движения автомобиля
  • диапазон изменения передаточного отношения (в случае наличия ав­томатической трансмиссии)
  • номер включенной передачи
  • информация о включении кондиционера и т. п.
  • напряжение аккумуляторной батареи
  • температура воздуха на впуске
  • расход воздуха
  • угловое положение дроссельной заслонки
  • напряжение сигнала кислородного датчика
  • сигнал датчика детонации

Входные каскады электронного блока управления осуществляют подготовку поступивших от датчиков сигналов, характеризующих режимные параметры, микропроцессор обрабатывает эти данные, определяет рабочий режим двигателя и производит расчет параметров необходимых управляющих сигналов, которые передаются на выходные каскады усиления, а затем поступают к исполнительным устройствам. Исполнительные устройства воздействуют на характеристики систем питания и зажигания, обеспечивая точное дозирование топлива и оптимальный момент зажигания.

Датчиками системы Мотроник являются датчики, аналогичные описанным для системы впрыска L-Джетроник. Однако, ввиду отсутствия прерывателя-распределителя, для определения частоты вращения коленчатого вала здесь применяется индукционный датчик.

Индуктивный датчик частоты вращения

Рис. Индуктивный датчик частоты вращения:
1 – постоянный магнит; 2 – корпус; 3 – картер двигателя; 4 — магнитомягкий сердеч­ник; 5 – обмотка; 6 – воздушный зазор; 6 — зубчатое колесо с точкой отсчета; 7 — магнитное поле; 8 – задатчик угловых импульсов (зубчатый диск) с отметчиком — пропуском зубьев

Индуктивный датчик содержат стержневой постоянный магнит 1 с по­люсным сердечником из магнитомягкой стали и обмотку индуктивности 5 с двумя выводами.

Датчик устанавливается непосредственно напротив ферромагнитного зубчатого диска — задатчика угловых импульсов 8, от которого его отделяет небольшой воздуш­ный зазор (0,8…1,5 мм). Сердечник соединен также с постоянным магнитом 1, и магнитное поле проходит через сердечник и зубчатый диск – задатчик импульсов 8. Интенсивность магнитного потока, проходя­щего через обмотку, зависит от того, нахо­дится ли датчик напротив зуба на диске или напротив промежутка (пропуска зубьев). Поскольку магнитный поток концентрируется зубьями диска, что приводит к увеличению магнитного потока через обмотку, то при подходе пропуска зубьев он ослабевает. Следовательно, при вращении зубчатого диска возникают колебания магнитного потока, которые, в свою очередь, генерируют синусоидальные колебания напряжения в электромагнитной обмотке, пропорциональ­ные скорости изменения магнитного потока. Амплитуда колебаний переменного напряжения увеличивается строго пропор­ционально увеличению скорости вращения зубчатого диска. Для генерирования достаточного уровня сигнала требуется, по крайней мере, 30 об/мин.

Переменное напряжение на выходе индукционного датчика

Рис. Переменное напряжение на выходе индукционного датчика:
1 – среднее напряжение; 2 – напряжение, соответствующее положению поршня в верхней мертвой точке

Количество зубьев на задатчике угловых импульсов зависит от конкретного применения. Очень большой пропуск зубьев (8) устанавливается для определения положения коленчатого вала и служит как отметка для синхронизации в ЭБУ. Местоположение пропущенного зуба не обязательно находится в ВМТ. Оно может быть смещено относительно ВМТ на любой угол, записанный в памяти блока управления.

Существует другой вариант задатчика угло­вых импульсов, который имеет один зуб на цилиндр. Следовательно, в случае четырехцилиндрового двигателя задатчик имеет четыре зуба и, соответственно, генерируются четыре импульса на один оборот зубчатого диска.

В роли задатчика может выступать и маховик с равномерно установленными стальными штифтами. Обычно они идут через каждые 10°, т.е. устанавливается 36 штифтов.

Геометрия зубьев задатчика и магнитного сердечника должны соответствовать друг другу. Электронная схема в ЭБУ преобразу­ет синусоидальное напряжение, которое ха­рактеризуется четко меняющимися ампли­тудами, в среднеквадратичный сигнал с постоянной амплитудой для его оценки в микропроцессоре ЭБУ.

Современные системы обычно имеют один индуктивный датчик, но в некоторых ранних версиях уста­навливались два датчика: датчик частоты вращения и датчик положения коленчатого вала.

Амплитуда переменного напряжения датчика изменяется прямо пропорционально частоте вращения. Напряжение может изменяться от 5 В на холостом ходу до 100 В при частоте вращения 6000 об/мин. Поскольку для процес­сора предпочтителен цифровой сигнал (включено/выключено), переменное напряжение преобразуется в аналого-цифровом преобразо­вателе (АЦП).

Индуктивный датчик может также использоваться в качестве задающего генератора для выдачи базового сигнала на зажигание и впрыск топлива.

В системах Мотроник предусмотрены также дополнительные функции системы впрыска. Необходимость в дополнительных функциях управления и регулиро­вания обусловлена жесткими требованиями, предъявляемыми к составу отработавших газов (ОГ), а также стремлением обеспечить наибольший комфорт и точное соответствие мощности двигателя условиям движения. В настоящее время используются следующие дополнительные функции:

  • регулирование частоты вращения коленчатого вала на холостом ходу
  • регулирование топливоподачи с обратной связью по составу смеси
  • управление углом опережения зажигания по детонации
  • рециркуляция ОГ для снижения выброса с отработавшими газами оксидов азота (NOX)
  • управление турбокомпрессором
  • управление длиной впускных каналов
  • регулирование фаз газораспределения соответствующим воздействием на газораспределительный механизм
  • ограничение подачи топлива при достижении заданной частоты вращения коленчатого вала

Если система управления и регулирования наделена этими разнообразными функциями, речь идет уже не столько об управлении двигателем, сколько об управлении автомобилем в целом, ибо командные сигналы вмешиваются в функционирование и других узлов автомобиля. При этом становится возможным реализовать связь управляющего устройства с автома­тической коробкой передач, что, в частности, способствует уменьшению ударных нагрузок при переключении передач, создавая благоприятный режим эксплуатации. Оказывается возможным также регулирование крутящего момента на ведущих колесах. Кроме того, можно обеспечить и управление функционированием регуляторов скорости автомобиля, которые в будущем станут весьма сложными устройствами, выполня­ющими при помощи радара автоматические функции управления движением с целью максимального облегчения вождения.

Общим для любых систем впрыска с электронным управлением являет­ся наличие датчика положения дроссельной заслонки, который в простей­ших системах служит основным источником информации о нагрузке двигателя. Вместе с тем большое значение имеет датчик давления, пневматически соединенный с впускным трубопроводом и регистрирующий абсолютное давление в нем. Для определения нагрузки двигателя особенно важно измерение количества проходящего через впускную систему воздуха. В системах впрыска Мотроник в зависимости марки и от модели автомобиля могут применяться следующие датчики расхода воздуха:

  • объемные расходомеры воздуха (LMM)
  • термоанемометрические массовые расходомеры воздуха с нагревае­мой нитью (LHM)
  • термоанемометрические массовые расходомеры воздуха с нагревае­мой пленкой (HFM)
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 оценок, среднее: 5,00 из 5)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *