Процесс сгорания топливной смеси в дизеле
СОДЕРЖАНИЕ:
Для осуществления действительного цикла в дизелях в воздушный заряд, сжатый до давления 2,5—5 МГа и имеющий температуру 750—1000 К, впрыскивается топливо под давлением от 40 до 100 МПа (в зависимости от типа камеры сгорания).
Для эффективного протекания горения топливо должно находиться в парообразном состоянии, но из-за недостатка времени на смесеобразование часть топлива не успеваем испариться и находится в начале горения в капельно-жидком состоянии. Поэтому процессы воспламенения и сгорания в этом случае сложные процессы, и включают в себя физико-химическую подготовку топлива, воспламенение и горение.
Первые очаги пламени появляются одновременно в нескольких точках камеры сгорания. Возникновение этих очагов вызывает нагрев близлежащих участков смеси и общий рост температуры, что вызывает испарение остальных частиц топлива и протекание предпламенных процессов в образующейся горючей смеси. Многоочаговое воспламенение вызывает большую скорость сгорания в начальный период и образующееся пламя практически мгновенно воспламеняет часть поступающего топлива. Однако условия горения этого топлива менее благоприятны из-за недостатка кислорода. Особенно это характерно для последней части впрыскиваемого топлива.
Если учесть характер и интенсивность тепловыделения, изменение температуры и давления в цилиндре в разные моменты времени, то весь процесс горения можно условно разделить на четыре фазы.
Рис. Индикаторная диаграмма и зависимость изменения температуры газов от угла поворота коленчатого вала в цилиндре дизеля
Первая фаза горения (01) — задержка воспламенения, начинается с момента поступления топлива (точка 1) и заканчивается в момент отрыва кривой сгорания от линии сжатия (точка 2) Впрыск топлива происходит до прихода поршня в ВМТ. Угол опережения впрыска топлива находится в пределах 20—35° поворота коленчатого вала.
Во время впрыска струя топлива, выходящая из форсунки под большим давлением, разбивается о плотные слои воздуха на мельчайшие капли, образуя факел распыления. При этом завихрения, которые придаются заряду сжимаемого воздуха, оказывают существенное влияние на развитие этого факела.
Рис. Развитие топливных струй в заряде: а — неподвижном; б — движущимся со скоростью 15 м/с; в — движущимся со скоростью 35 м/с
Концентрация топлива в таком факеле изменяется по поперечному сечению и длине. В ядре факела находятся наиболее крупные, а на периферии — наиболее мелкие капли, находящиеся друг от друга на значительных расстояниях. Следовательно, структура рабочей смеси в дизелях крайне неоднородна, поэтому здесь коэффициент избытка воздуха обычного смысла лишен, так как он не дает представления о действительном составе смеси.
Локальные значения коэффициента избытка воздуха по различным зонам камеры сгорания могут меняться от 0 (жидкие капли) до бесконечности (воздух). Именно наличие всей гаммы составов смеси и температур определяет возможность воспламенения в среднем очень бедной смеси, например, при а = 6 и более.
Таким образом, период задержки воспламенения включает в себя время, необходимое для распада струй на капли, некоторого продвижения капель по объему камеры сгорания, прогрева, частичного испарения и смешения топливных паров с воздухом, а также время саморазгона химических реакций.
Если период задержки воспламенения больше продолжительности впрыска, то все топливо оказывается поданным в цилиндр до начала воспламенения. При этом большая часть его успевает испариться и смешаться с воздухом. В результате объемного воспламенения этой части топлива в цилиндре развивается резкое повышение давления с высокими динамическими нагрузками на детали и повышенным уровнем шума. Поэтому длительный период задержки воспламенения нежелателен.
Продолжительность первой фазы сгорания составляет 1—3 мс, что соответствует 12—25° поворота коленчатого вала.
Факторы влияющие на продолжительность первой фазы сгорания
- Воспламеняемость топлива, которая оценивается цетановым числом. Чем выше цетановое число, тем лучше воспламеняемость.
- Давление и температура воздушного заряда в начале впрыска топлива. При увеличении давления и температуры период задержки воспламенения сокращается.
Рис. Различные конструкции камер сгорания в поршне: а — полусферическая (дизели ВТЗ); б — четырехтактного дизеля ЯМЗ; в — дизеля ЦНИДИ; г —дизеля фирмы «МАНН»; д — дизеля фирмы «Дойтц»; е — дизеля фирмы «Гессельманн»; ж — дизеля фирмы «Даймлер-Бенц»; бнз — надпоршневой зазор
- Тип камеры сгорания, который оказывает влияние на задержку воспламенения, гак как в зависимости от типа камеры по разному будет проходить распространение топлива по объему воздушного заряда и в пристеночной зоне. Кроме того температура стенок камеры сгорания также будет зависеть от ее типа.
- Интенсивность направленного движения заряда в камере. Увеличение интенсивности движения заряда несколько сокращает период задержки воспламенения. На рисунке показаны способы создания вихревого движения заряда в цилиндре при впуске.
- Тип распылителя форсунки. Форсунка закрытого типа сокращает период задержки воспламенения. Разделенные камеры сгорания имеют основную и вспомогательную полости, соединенные горловиной. В настоящее время применяют в основном вихревые камеры сгорания и предкамеры, где ось соединительной горловины направлена по касательной к внутренней поверхности камеры сгорания. Разделенные камеры сгорания обеспечивают более полное сгорание топлива и менее жесткую работу за счет сокращения времени задержки воспламенения.
- Нагрузка. С ростом нагрузки увеличивается давление и температура цикла, что приводит к повышению теплового режима двигателя, а это к свою очередь вызывает сокращение времени задержки воспламенения.
- Частота вращения коленчатого вала. Увеличение частоты вращения коленчатого вала приводит к улучшению распыления, увеличению давления и температуры конца сжатия, что способствует сокращению первой фазы горения, особенно в дизелях с разделенными камерами сгорания. Продолжительность первой фазы горения при этом растет.
Вторая фаза горения (02) — самовоспламенение и быстрое горение начинается с момента воспламенения (см. рис. точка 2) и заканчивается в момент достижения максимального давления в цилиндре (точка 3). В первую очередь сгорают однородные слои смеси топлива и воздуха хорошо перемешанные между собой. При этом пламя распространяется очень быстро, соответственно быстро растет давление, в определенных случаях с образованием ударной волны, распространяющейся со скоростью звука. Но в отличие от карбюраторных двигателей в дизелях эти волны не переходят в детонационные, так как структура смеси по всему объему камеры сгорания неравномерна. Это позволяет получать более высокую степень сжатия.
Рис. Способы создания вихревого движения заряда в цилиндре при впуске:
а — тангенциальный впускной канал; б — клапан с экраном; в — тангенциальные продувочные окна двухтактного дизеля; г — винтовой канал; д — экран на седле клапана
После того, как сгорит хорошо подготовленная к воспламенению топливовоздушная смесь, горение продолжается в зонах, где структура смеси более неравномерна. Здесь на индикаторной диаграмме наблюдается некоторый спад роста давления.
Рис. Разделенные камеры сгорания: а — вихревая (на верхней проекции показано направление перетекания заряда из основной полости в вихревую камеру при сжатии, на нижней — из вихревой камеры в основную при расширении); б — предкамера: в — вихревая типа «Пинтакс»; г — предкамера малого перепада давления дизеля MWM
В течение второй фазы выделяется 30—45 % всей теплоты. Температура рабочего тела возрастает до 1600—1800 К. Максимальное давление может достичь 6—9 МПа, а при наддуве превысить 10 МПа. Продолжительность второй фазы 0,8—1,5 мс, что соответствует 10—20° поворота коленчатого вала.
Факторы влияющие на развитие и продолжительность второй фазы
- Количество топлива, прошедшего предпламенную подготовку за период задержки воспламенения и сгорающее с большой скоростью. Чем больше подача топлива и мельче распыление, тем интенсивнее тепловыделение и рост давления.
- Тип камеры сгорания. Влияние конструкции камеры на первую фазу горения приводит к определенному развитию и второй фазы, так как определяет количество топливовоздушной смеси, подготовленной к воспламенению в течение первой фазы.
- Нагрузка. С уменьшением нагрузки продолжительность второй фазы горения сокращается, так как уменьшается величина впрыскиваемой порции топлива и время его подачи.
- Частота вращения коленчатого вала. При росте частоты вращения коленчатого вала улучшается качество распыления, сокращается продолжительность впрыска, растет давление и температура заряда. Все это приводит к сокращению второй фазы горения.
Третья фаза горения (G3) — характеризуется плавным изменением давления Началом этой фазы считается конец второй фазы (точка 3), а окончанием — момент, соответствующий достижению максимальной средней температуры газов в цилиндре (точка 4). К началу третьей фазы все несгоревшее топливо, поданное в цилиндр во время первых двух фаз, находится в виде капель или сгустков паров, которые отделены от зон со свободным кислородом фронтом пламени или продуктами горения. В результате происходит термическое разложение капель топлива (крекинг) с образованием частиц углерода в виде сажи, которая, покидая цилиндр вместе с отработавшими газами, вызывает сильное дымление на выпуске. Горение продолжается при увеличивающемся объеме камеры, поэтому давление плавно понижается.
За время третьей фазы выделяется 25—30 % теплоты, поэтому температура продолжает повышаться, достигая в конце фазы 1800—2200 К. Продолжительность третьей фазы — 1—2 мс, что соответствует 15—25° поворота коленчатого вала.
Факторы влияющие на развитие третьей фазы
- Качество распыления и количество топлива, впрыскиваемого после начала сгорания. Чем меньше подано топлива до начала третьей фазы горения, тем меньше будет выделено теплоты в этой фазе, что характерно для работы дизеля на малых нагрузках.
- Скорость движения воздушного заряда. Рост скорости движения заряда увеличивает тепловыделение, но это происходит до определенного момента. При чрезмерном завихрении заряда тепловыделение в третьей фазе снижается, так как в этом случае продукты сгорания из зоны одного факела попадают в зону другого, увеличивая неполноту сгорания.
- Частота вращения коленчатого вала С ростом частоты вращения коленчатого вала скорость движения заряда увеличивается, а распыление улучшается. Продолжительность третьей фазы сокращается.
Четвертая фаза горения (04) — догорание начинается в момент достижения максимальной температуры и продолжается в течение всего времени догорания топлива. В течение этой фазы догорает топливо, не успевшее сгореть в третьей фазе, причем происходит это в условиях недостатка кислорода, так как значительное его количество уже израсходовано. Поэтому догорание протекает медленно.
За время четвертой фазы при полной нагрузке дизеля выделяется 15—25 % теплоты. Таким образом, общее количество тепловыделения к концу четвертой фазы оставляет 90—95 %. Остальные 5—10 % теряются вследствие неполноты сгорания топлива. Продолжительность четвертой фазы 3,5—5 мс. что соответствует 50—60° поворота коленчатого вала.
Факторы влияющие на развитие четвертой фазы горения
- Турбулентное движение заряда, которое улучшает контакт топлива и воздуха и, следовательно, улучшает догорание.
- Качество распыления в конце подачи топлива. Чем больше диаметр капель, тем продолжительнее процесс догорания Нечеткость отсечки топлива в конце впрыска, как и продолжительное снижение давления в конце впрыска не только снижают тепловыделение, но и вызывают закоксовывание сопел форсунок.
- Попадание топлива на холодные стенки внутри цилиндрового пространства приводит к увеличению времени догорания, поэтому увеличение нагрузки дизеля до его прогрева нежелательно.
- Наддув. Используя наддув, увеличивают количество подаваемого топлива, в том числе и путем затяжного впрыска, что приводит к увеличению времени догорания.
Добавить комментарий