Рубрика: Диагностирование автомобиля

Определение расхода картерных газов индикатором КИ-13671

Диагностирование цилиндропоршневой группы двигателей внутреннего сгорания

Состояние цилиндропоршневой группы (ЦПГ) определяется по величине давления сжатия или разрежения, результатам измерений неплотностей в камере сгорания и сопряжении гильза-поршень по величине утечек воздуха и прорыва газов в картер, а также по угару масла во время работы двигателя. Диагностирование ЦПГ дизеля проводят при ТО-3 и перед ремонтом или поступлении заявки от машиниста. Основные косвенные признаки неисправного состояния ЦПГ — повышенный расход масла на угар и прорыв газов в картер, трудный пуск, снижение мощности двигателя. Наибольшее распространение для оценки ЦПГ получил способ измерения количества газов, прорывающихся в картер. Количество газов измеряют индикатором КИ-13671. Для измерения количества газов двигатель прогревают до температуры жидкости в системе охлаждения 70 — 90°С, закрывают пробками отверстие сапуна, отверстие под масломерную линейку и подключают индикатор с помощью переходника к заливной горловине картера двигателя. Измерение расхода газов проводится при номинальной частоте вращения коленчатого вала. Прорвавшиеся в картер газы проходят через индикатор и поднимают поршень 2 сигнализатора В верхнее положение. Поворачивая плавно крышку 5 и, тем самым закрывая дроссельное отверстие индикатора, добиваются, чтобы риска на колеблющемся поршне 2 совпала с риской на трубке 1. По лимбу на крышке 5 против указателя определяют расход газов. Если расход газов более 170 л/мин, открывают одно или два дополнительных отверегия, вывинтив заглушки 4. Рис. Определение расхода картерных газов индикатором КИ-13671: 1 — трубка сигнализатора; 2 — поршень сигнализатора; 3 — удлинитель; 4 — заглушка; 5 — крышка; 6 — корпус; 7 — переходник В этом случае необходимо прибавить к показанию индикатора соответственно 100 или 200 л/мин. При ресурсном диагностировании тракторов перед ТО-3, которое предшествует плановому текущему или капитальному ремонту, полученное значение расхода газов сравнивают с их допустимыми значениями и принимают решение о возможности дальнейшей эксплуатации двигателя. Сравнительную оценку технического состояния цилиндров можно дать по разряжению в надпоршневом пространстве. Чтобы измерить разряжение, снимают с двигателя форсунки, устанавливают в отверстие для форсунки наконечник вакуум-анализатора КИ-5315 и прокручивают с помощью пускового устройства коленчатый вал. При движении поршня вниз на такте расширения в надпоршневом пространстве создается разряжение, под действием которого открывается впускной клапан прибора. По вакуумметру фиксируют максимальное значение разряжения. Номинальное значение разряжения в цилиндре — 0,088, допустимое — 0,07, предельное — 0,068 МПа. В случае, когда расход газов не превышает допустимого значения, но разряжение в цилиндрах ниже допускаемого, необходимо восстановить герметичность клапанов механизма газораспределения. Если расход газов превышает допустимое значение, необходимо заменить кольца или цилиндропоршневую группу. Состояние ЦПГ автомобильных двигателей оценивают по прорыву газов в картер или по утечке воздуха из надпоршневого пространства (компрессии). Компрессию в каждом цилиндре измеряют компрессометром КИ-861 (для дизельных двигателей) или модифицированым прибором КИ-179 (для карбюраторных двигателей).

Датчики частоты вращения двигателя

Применения Датчики частоты вращения двигателя используются в системах управления двигателем для: измерения числа оборотов двигателя определения положения коленчатого вала (положение поршня двигателя) Число оборотов рассчитывается по интервалу между сигналами датчика скорости вращения. Индуктивные датчики скорости вращения Рис. Индуктивный датчик скорости вращения (конструкция): Постоянный магнит Корпус датчика Корпус двигателя Полюсный контактный штифт Обмотка Воздушный зазор Зубчатое колесо с точкой отсчета Конструкция и принцип действия Датчик монтируется прямо напротив ферромагнитного зубчатого колеса (поз. 7) с определенным воздушным зазором. Он имеет сердечник из магнитомягкой стали (полюсный контактный штифт, поз. 4) с обмоткой (5). Полюсный контактный штифт соединен с постоянным магнитом (1). Магнитное поле распространяется через полюсный контактный штифт, проходя в зубчатое колесо. Магнитный поток, проходящий через катушку, зависит от того, попадает ли расположение датчика напротив впадины или зуба колеса. Зубец соединяет в пучок магнитный поток рассеяния, исходящий от магнита. Через катушку происходит усиление сетевого потока. Впадина, наоборот, ослабляет магнитный поток. Эти изменения магнитного потока при вращении зубчатого колеса индуцируют в катушке синусоидальное выходное напряжение, пропорциональное скорости изменения и числу оборотов двигателя. Амплитуда переменного напряжения интенсивно возрастает с увеличением числа оборотов (несколько мВ… > 100 В). Достаточная амплитуда присутствует, начиная с минимального числа оборотов от 30 в минуту. Рис. Сигнал индуктивного датчика скорости вращения двигателя: Зуб Впадина Опорный сигнал Активные датчики скорости вращения Активные датчики скорости вращения работают по магнитостатическому принципу. Амплитуда выходного сигнала не зависит от числа оборотов. Благодаря этому можно измерять скорость вращения и при очень низком числе оборотов (квазистатическое определение числа оборотов). Дифференциальный датчик Холла На проводящей ток пластинке, по которой вертикально проходит магнитная индукция В, поперечно к направлению тока можно снимать напряжение UH (напряжение Холла), пропорциональное направлению тока. Рис. Принцип работы дифференциального датчика Холла: а Расположение датчика b Сигнал датчика Холла большая амплитуда при маленьком воздушном зазоре маленькая амплитуда при большом воздушном зазоре с Выходной сигнал Магнит Датчик Холла 1 Датчик Холла 2 Зубчатое колесо В дифференциальном датчике Холла магнитное поле вырабатывается постоянным магнитом (поз. 1). Между магнитом и импульсным кольцом (4) находятся два сенсорных элемента Холла (2 и 3). Магнитный поток, который проходит сквозь них, зависит от того, находится ли датчик скорости вращения напротив зубца или паза. Благодаря созданию разности сигналов от обоих датчиков достигается снижение магнитных сигналов возмущения и улучшенное соотношение сигнала/ шума. Боковые поверхности сигнала датчика могут обрабатываться без оцифровывания непосредственно в блоке управления. Вместо ферромагнитного зубчатого колеса используются также многополюсные колеса. Здесь на немагнитном металлическом носителе установлен намагничивающийся пластик, который попеременно намагничивается. Эти северные и южные полюсы принимают на себя функцию зубцов колеса. AMR-датчики Рис. Принцип определения числа оборотов с помощью датчика AMP: а Размещение в различные моменты времени b Сигнал датчика AMP с Выходной сигнал Импульсное (активное) колесо Сенсорный элемент Магнит Электрическое сопротивление магнито-резистивного материала (AMP, анизотропный магниторезистивный) является анизотропным. Это означает, что оно зависит от направления магнитного поля, которое на него воздействует. Это свойство используется в AMP-датчике. Датчик находится между магнитом и импульсным кольцом. Линии поля изменяют свое направление, когда вращается импульсное (активное) колесо. В результате формируется синусоидальное напряжение, которое усиливается в схеме обработки данных и преобразуется в сигнал прямоугольной формы. GMR-датчики Усовершенствование активных...

Способы фиксации резьбовых соединений рулевого управления

Порядок проверки технического состояния элементов рулевого управления

Перед проверкой технического состояния элементов рулевого управления следует подготовить объект диагностирования: Установить транспортное средство на горизонтальную ровную площадку с асфальто- или цементобетонной поверхностью. Установить управляемые колеса в положение, соответствующее прямолинейному движению. Перевести рычаг переключения передач (селектор автоматической трансмиссии) в нейтральное положение. Под неуправляемые колеса транспортного средства подложить противооткатные упоры. Определить наличие или отсутствие гидроусилителя на транспортном средстве; при его наличии — определить способ привода насоса и расположение основных его элементов. Далее в указанном порядке проверяется рулевое управление без вывешивания колес: Оценить соответствие всех элементов рулевого управления конструкции транспортного средства. Осмотреть рулевое колесо на предмет отсутствия повреждений. В случае применения оплетки рулевого колеса следует оценить надежность ее крепления. Оценить надежность крепления рулевого колеса к валу рулевой колонки, для чего приложить знакопеременные ненормируемые усилия к его ободу в направлении вдоль оси рулевой колонки. Осмотреть элементы рулевой колонки, находящиеся в кабине автомобиля. Проверить работоспособность устройства регулировки положения колонки (при его наличии) и надежность ее фиксации в заданных положениях. Оценить надежность крепления рулевой колонки, для чего приложить знакопеременные ненормируемые усилия к ободу рулевого колеса в радиальном направлении в двух взаимно перпендикулярных плоскостях. Проверить работоспособность устройства, предотвращающего несанкционированное использование транспортного средства и воздействующего на рулевое управление, для чего извлечь ключ зажигания из замка и произвести запирание рулевой колонки. Оценить легкость вращения рулевого колеса во всем диапазоне угла поворота управляемых колес, для чего повернуть рулевое колесо по направлению движения и против направления движения часовой стрелки до упора. При повороте обратить внимание на легкость вращения без рывков и заеданий, а также отсутствие посторонних шумов и стуков. На транспортных средствах с гидроусилителем рулевого управления проверку осуществлять при заведенном двигателе. После окончания проверки вернуть рулевое колесо в положение, соответствующее прямолинейному движению. На транспортных средствах с гидроусилителем определить отсутствие самопроизвольного поворота рулевого колеса от нейтрального положения при работающем двигателе. Осмотреть карданные шарниры или эластичные муфты рулевой колонки, оценить надежность их крепления и убедиться в отсутствии не предусмотренных конструкцией люфтов и биений в данных соединениях. Осмотреть рулевую передачу на предмет отсутствия повреждений и подтеканий смазочного масла и рабочей жидкости (если рулевая передача является элементом системы гидроусилителя). При возможности убедиться в отсутствии люфтов входного и выходного валов или их биения при повороте рулевого колеса. Оценить надежность крепления картера рулевой передачи к раме (кузову) по наличию всех крепежных деталей и отсутствию его подвижности при вращении рулевого колеса в обе стороны. Осмотреть детали рулевого привода на предмет отсутствия повреждений и деформаций. Оценить надежность крепления деталей друг к другу и к опорным поверхностям. Проверить наличие элементов фиксации резьбовых соединений. Фиксация резьбовых соединений производится, как правило, тремя способами: с помощью самоконтрящихся гаек, шплинта и контровочной проволоки. Самоконтрящаяся гайка может иметь либо снабженный пластмассовой вставкой, либо деформированный участок резьбы для обеспечения плотного охвата резьбы винта. Рис. Способы фиксации резьбовых соединений рулевого управления: а — самоконтрящейся гайкой; б — шплинтом; в — проволокой В случае применения шплинтов гайка имеет ряд прорезей в радиальном направлении, а винт — диаметральное отверстие в конечной части резьбы. После затяжки такого соединения шплинт вставляется в отверстие и работает на срез, предотвращая отворачивание гайки. Контровочной проволокой фиксируются, как правило, винты, завернутые в глухие отверстия....

Прибор для проверки и регулировки света фар модели ОПК

Приборы для проверки и регулировки света фар

Прибор для проверки света фар ОПК (ГАРО) Общий вид прибора для проверки света фар модели ОПК (ГАРО) приведен на рисунке. Прибор состоит из основания на колесах, стойки, установленной на основании вертикально, оптической камеры и ориентирующего устройства. Рис. Прибор для проверки и регулировки света фар модели ОПК: 1 — ось; 2 — крышка; 3 — разъем для подключения компьютера; 4 — разъем для подключения зарядного устройства; 5 — отсчетный лимб; 6 — клавиша для включения питания прибора; 7 — клавиша для переключения света фар; 8 — приборная панель; 9 — оптическая камера; 10 — ориентирующее устройство; 11 — упорная гайка; 12 — шайбы; 13 — ручка; 14 — кронштейн фиксатора; 15 — ось винта; 16 — упорный винт; 17 — ручка; 18 — рычаг фиксатора; 19 — стойка; 20 — основание Оптическая камера представляет собой корпус, в котором установлены линза, пузырьковый уровень, смотровое стекло, экран, перемещающийся по вертикали с помощью отсчетного лимба 5. На экране установлены фотоэлементы для измерения силы света. Рис. Расположение фотоэлементов на подвижном экране оптической камеры прибора: 1, 4 — фотоэлементы для измерения силы света противотуманной фары соответственно в теневой и световой области пучка света; 2 — фотоэлемент для измерения силы дальнего и ближнего света в теневой области пучка света и силы света всех остальных световых приборов; 3 — фотоэлемент для измерения силы ближнего света в световой области пучка света На крышке камеры расположена приборная панель. На ней установлен жидкокристаллический индикатор, на который выводятся результаты измерений и текстовые сообщения. Изображены условные обозначения выбранного режима измерения (по порядку символов на рисунке — ближний свет, дальний свет, головной противотуманный свет, указатель поворотов), которые подсвечиваются с помощью светодиода; таблицы с данными для регулировки фар, имеются клавиши управления прибором. На задней стенке камеры расположены: клавиша для включения питания прибора либо для включения режима зарядки аккумулятора прибора разъем для подключения компьютера разъем для подключения зарядного устройства отсчетный лимб крышка, за которой располагается элемент питания Перемещение камеры по стойке производится при ослабленном упорном винте (против хода часовой стрелки до упора) и нажатом рычаге фиксатора. При этом камера поддерживается за ручку, расположенную с ее противоположной стороны. Фиксация камеры на необходимой высоте осуществляется при отпускании рычага 18 и закручивании упорного винта по ходу часовой стрелки до упора. Высота установки контролируемой фары определяется (в миллиметрах) по шкале, нанесенной на стойку, по верхнему краю кронштейна фиксатора 14. Рис. Приборная панель: 1 — жидкокристаллический индикатор; 2 — символы режима измерений; 3 — таблицы; 4 — клавиши управления Установка оптической оси прибора в горизонтальной плоскости производится по пузырьковому уровню поворотом оптической камеры относительно оси винта 15 и фиксируется ручкой 17. Ориентирующее устройство щелевого типа предназначено для установки оптической оси прибора параллельно оси транспортного средства. Ориентирующее устройство 10 устанавливается в одно из трех отверстий стойки через упорную гайку 11, две шайбы 12 и фиксируется ручкой 13. Прибор ОПК в отличие от других приборов подобного типа позволяет измерять частоту следования проблесков указателей поворотов в герцах, которая определяется одновременно с силой света указателей поворотов. На данном приборе можно измерять также силу света фар с газоразрядными источниками света. Прибор имеет выход для информационного обмена...

Основные места контроля тормозных систем с гидроприводом

Проверка герметичности тормозных систем

Для транспортных средств с гидроприводом Для транспортных средств с гидроприводом данная проверка заключается в осмотре всех основных элементов гидропривода на отсутствие утечек тормозной жидкости. При этом особое внимание необходимо уделять следующим элементам: главному тормозному цилиндру в месте подсоединения к нему бачка для тормозной жидкости количеству жидкости в самом бачке штуцерам соединения трубопроводов тормозной системы штуцерам для удаления воздуха из системы резиновым шлангам, особенно в местах их обжатия рабочим цилиндрам и пространству вокруг них Подтекание тормозной жидкости в элементах привода не допускается. При этом под подтеканием следует понимать появление жидкости на поверхности деталей герметичных систем привода или питания, воспринимаемое на ощупь. Не допускаются также перегибы трубопроводов тормозного привода, их перетирание, коррозия, грозящая потерей герметичности или разрушением. Уровень жидкости в бачке должен находиться между метками, соответствующими максимальному и минимальному положению. Трещины и повреждения тормозных шлангов, доходящие до слоя армирования, а также их вздутие при повышении давления в тормозном приводе не допускаются. Для транспортных средств с пневмоприводом Для транспортных средств с пневмоприводом проверка заключается в осмотре и прослушивании основных элементов пневмопривода на отсутствие утечек сжатого воздуха. Проверка должна проводиться при свободном положении педали управления рабочей тормозной системой и деактивированном стояночном тормозе. Под колеса транспортного средства с обеих сторон необходимо подложить противооткатные упоры. При данной проверке особое внимание уделяется следующим элементам: осушителю клапанам и кранам тормозной системы тормозным камерам и энергоаккумуляторам модуляторам АБС резиновым шлангам по всей длине Кроме того, надо проверить на утечки прочие элементы конструкции транспортного средства, имеющие пневматический привод: пневморессоры и краны подвески кабины, сиденья и шасси. Следует отметить, что управляющие элементы пневмоподвесок могут регулировать свое положение путем частичного сброса воздуха из кранов регулировки уровня, поэтому в начальный момент после остановки транспортного средства (примерно в течение 0,5.1,0 мин) может прослушиваться утечка сжатого воздуха из таких элементов, которая затем прекращается. Рис. Основные места контроля тормозных систем с гидроприводом: 1 — дисковый тормозной механизм; 2 — клапаны гидропривода; 3 — главный тормозной цилиндр; 4 — резиновые шланги; 5 — трос привода стояночного тормоза; 6 — барабанный тормозной механизм Указанную проверку необходимо повторить при приведенной в действие педали управления рабочей тормозной системой. При обнаружении утечки сжатого воздуха ее интенсивность проверяют в указанном ниже порядке: С помощью регулятора давления установить давление в питающем контуре пневмосистемы на уровне нижнего предела регулирования. Данный предел соответствует давлению в указанном контуре, при котором вступает в работу компрессор. Чтобы определить это давление, необходимо завести двигатель и довести давление в пневмосистеме до уровня, при котором срабатывает разгрузочное устройство осушителя воздуха или регулятор давления и происходит отключение подачи компрессора. После этого, не останавливая двигатель, кратковременными интенсивными нажатиями на педаль тормоза снизить давление в пневмосистеме до уровня, при котором компрессор снова начнет подавать воздух в систему. Немедленно заглушить двигатель и считать установившееся в питающем контуре давление нижним пределом регулирования регулятора давления. Если при этом возникают трудности с определением «на слух» момента вступления компрессора в работу, можно условно считать нижним пределом регулирования давление, на 0,12.0,15 МПа меньшее, чем давление срабатывания разгрузочных устройств и отключения компрессора. Зафиксировать начальное значение давления в пневмосистеме и начать отсчет времени по секундомеру. В течение регламентированного времени не приводить в...

Схема стенда для проверки амортизаторов

Стенды для проверки амортизаторов и подвески

Важность проверки амортизаторов и подвески Амортизаторы наряду с другими системами и агрегатами оказывают существенное влияние на безопасность движения. Известно, что отсутствие надежного контакта колеса с опорной поверхностью, особенно при высоких скоростях движения автомобиля, приводит к снижению безопасной скорости движения при повороте на 10.15 %, а также к увеличению тормозного пути на 5.10 %. При неисправных амортизаторах колебания колеса могут исказить информацию, поступающую в блок управления АБС; при этом возможно ошибочное растормаживание колеса. Неисправные амортизаторы приводят к нестабильному и неравномерному освещению дороги, ослеплению водителей встречных автомобилей вследствие повышенного колебания кузова или шасси. Переднеприводной автомобиль с амортизаторами, изношенными на 50 %, при движении с постоянной скоростью по дороге, покрытой слоем воды толщиной 6 мм, может начать аква- планирование при скорости, на 10 % меньшей скорости такого же автомобиля, но с исправными амортизаторами. В настоящее время амортизаторы по влиянию на безопасность движения ставят в один ряд с такими элементами и системами активной безопасности автомобиля, как шины, тормозные системы и рулевое управление. Причем при техническом обслуживании автомобиля должное внимание состоянию амортизаторов, как правило, не уделяется. Износ и старение деталей амортизаторов происходят медленно, вследствие чего постепенно снижается и эффективность. Водитель не чувствует резких изменений в поведении автомобиля, привыкая к постепенному ухудшению его характеристик. В связи с этим в процессе эксплуатации автомобиля весьма актуальны периодическое диагностирование амортизаторов и оценка эффективности их работы. Стенд для проверки амортизаторов Для оценки состояния подвески (в первую очередь, амортизаторов) автомобиля в процессе эксплуатации применяются стенды, имитирующие движение автомобиля по неровностям. Их действие основано на моделировании резонанса в подвеске автомобиля, который возникает в результате воздействия внешней силы от неровностей опорной поверхности. При этом частота колебаний подвески оказывается близкой к частоте свободных колебаний неподрессоренной массы. При резонансе резко возрастают амплитуды и ускорения вынужденных колебаний масс, а их уровень зависит от качества (технического состояния) амортизаторов. Оценка состояния подвески автомобиля производится по методу EUSAMA (Европейская комиссия по стандартизации вибрационных методов испытаний в машиностроении) в зоне высокочастотного резонанса посредством измерения изменяющейся при колебаниях платформы силы воздействия колеса на измерительную площадку. Стенд для проверки амортизаторов представляет собой две площадки, на которые устанавливается автомобиль последовательно передними и задними колесами. Каждая из площадок снабжена встроенными датчиками для измерения как статической, так и динамической нагрузки на колеса автомобиля. Колебания площадок производятся с помощью эксцентрика 5, приводимого в движение электродвигателем 3. При подключении стенда платформы начинают совершать вертикальные колебания с различными амплитудой (6,0, 7,5 или 9,0 мм) и частотой возбуждения, изменяющейся от максимальной (16 или 23 Гц), превосходящей резонансную частоту колебаний неподрессоренной массы, до нулевой (при отключении стенда). За счет пружин малой жесткости в приводе стенда обеспечивается постоянный контакт колес автомобиля с платформами. Рис. Схема стенда для проверки амортизаторов: 1 — колесо автомобиля; 2 — площадка; 3 — электродвигатель; 4 — маховик; 5 — эксцентрик; 6 — рычаг При достижении максимальной частоты источник питания электродвигателей отключается и система начинает совершать свободные затухающие колебания. В случае приближения частоты собственных колебаний неподрессоренной массы к области высокочастотного резонанса происходит увеличение амплитуды колебаний; чем оно значительнее, тем хуже работает амортизатор. Результаты колебательного процесса при работе стенда автоматически обрабатываются и заносятся в память компьютера, а по окончании...

Варианты размещения светоотражающей маркировки транспортных средств

Требования к компонентам световых приборов

Огни, излучаемые фарами дальнего и ближнего света, должны иметь белый свет, а передними противотуманными фарами — белый или желтый. Установка фар дальнего и ближнего света на автомобилях обязательна. При этом могут быть установлены также противотуманные фары. Применение каких-либо из перечисленных фар на прицепах не допускается. На транспортное средство должны быть установлены две или четыре фары дальнего света и две фары ближнего света. Допускается также установка двух противотуманных фар. Указанные фары устанавливаются спереди транспортного средства. При этом водителю не должен мешать излучаемый свет, отраженный зеркалами заднего вида и(или) другими светоотражающими поверхностями транспортного средства. Для транспортных средств категории N3 допускается установка дополнительной пары фар дальнего света при условии, что одновременно может гореть не более двух пар и при переключении дальнего света на ближний все фары дальнего света выключаются одновременно. Существующие в настоящее время типы фар дальнего и ближнего света представлены в таблице. Таблица. Типы и маркировка фар ближнего и дальнего света Тип фары по назначению Маркировка фары в зависимости от типа и применяемого источника света Лампа накаливания Галогенная лампа Газоразрядная лампа Ближнего света С НС DC Дальнего света R НR DR Ближнего и дальнего света СR НСR DCR Типы фар и прочих световых приборов, а также другие обозначения указываются на их корпусах или рассеивателях нестираемым способом. В настоящее время нередки случаи установки на транспортные средства дополнительных фар дальнего света и противотуманных, поэтому целесообразно остановиться на предписаниях по их установке. Отдельных предписаний по установке фар дальнего света Правилами ЕЭК ООН № 48 не предусмотрено. Однако Правилами дорожного движения, действующими в Республике Беларусь, не допускается установка любых дополнительных фар на крыше транспортного средства. Установка противотуманных фар должна соответствовать следующим предписаниям: по ширине: та точка видимой поверхности фары в направлении исходной оси (вперед), которая в наибольшей степени удалена от средней продольной плоскости транспортного средства, должна находиться на расстоянии не более 400 мм от края габаритной ширины транспортного средства (под видимой поверхностью в данном случае следует понимать зеркальную поверхность отражателя фары); по высоте: не менее 250 мм над поверхностью земли. Для транспортных средств категорий M1 и N1 высота установки должна составлять не более 800 мм над поверхностью земли. При этом для любых транспортных средств ни одна из точек на видимой поверхности в направлении исходной оси не должна находиться выше наиболее высокой точки видимой поверхности в направлении исходной оси фары ближнего света. Свет фар должен быть направлен вперед, при этом для ближнего света фар имеются особые предписания, касающиеся направления пучка света по вертикали и положения светотеневой границы его пятна. Конструкция фары или источника света, излучающего ближний свет, должна предусматривать особую форму светового пятна на белом матовом экране, расположенном в вертикальной плоскости, перпендикулярной к продольной оси транспортного средства. Характерная форма этого пятна для фар европейской системы светораспределения типа C, HC, CR, HCR представлена на рисунке ниже. Для фар типа DC, DCR она может, кроме того, иметь форму, показанную на рисунке б. Особые требования предъявляются также к световому пятну противотуманных фар, форма которого дана на рисунке в. Вертикальная плоскость, содержащая исходную ось фары, делит экран на две части линией V-V (рисунок, а). Левая часть экрана содержит горизонтальную часть светотеневой...

Аддитивная коррекция смеси

Коррекция регулировки топливовоздушной смеси

Современные системы впрыска способны корректировать состав смеси в заданных пределах. Преимущество этой коррекции состоит в компенсировании изменений, обусловленных износом двигателя по мере увеличения пробега и всегда точной адаптации смеси к диапазону нагрузок. Возникающие изменения распознаются лямбда-зондом, и время впрыска изменяется. Смесь всегда регулируется под идеальный коэффициент избытка воздуха. Если коррекция смеси в какой-то рабочей точке выполняется многократно с одинаковой коррекцией количества, то для этой рабочей точки предпринимается длительная коррекция смеси и значение коррекции записывается в ЭБУ. Дальнейшие коррекции смеси в этой рабочей точке уже не потребуются. Можно снова использовать весь диапазон лямбда-регулирования от бедной до богатой смеси. Различают два вида коррекции смеси: мультипликативную аддитивную Обе коррекции выполняются через изменения характеристики впрыска, а именно его длительности. Дополнительная коррекция также называется кратковременной коррекцией впрыска (Short Term Fuel Trim), а мультипликативная — долговременной коррекцией впрыска (Long Term Fuel Trim). Как правило, коррекция смеси происходит при: компенсации изменения плотности воздуха при езде в горах; подсасывании воздуха через неплотности; изменении давления топлива; пульсации давления топлива; производственных допусках и разбросу параметров форсунок. При диагностике лямбда-зонда во избежание ошибочной интерпретации нужно также учитывать текущие значения коррекции смещения характеристики. Так лямбда-зонд, постоянно выдающий сигнал бедной смеси, может быть абсолютно исправен, поскольку слишком большая масса воздуха, подсасываемого из-за нарушения герметичности, явно превышает возможные пределы коррекции. Однако не каждую неисправность можно диагностировать через коррекцию времени впрыска. Если неисправен, к примеру, датчик температуры всасываемого воздуха и датчик температуры охлаждающей жидкости, то в результате изменяется также время впрыска, но коррекция смеси не выполняется. Следует иметь в виду, что при замене деталей (например, регулятора холостых оборотов или форсунки) значения коррекции должны быть обнулены, и система должна запомнить значения заново. В новых системах из экономии часто предпочитается вариант «запоминания» значений. Аддитивная коррекция смеси Аддитивная коррекция смеси работает на холостом ходу и частично в нижнем диапазоне нагрузок. При аддитивной коррекции смеси фиксированные значения коррекции прибавляются к вычисленному базовому времени впрыска (либо вычитаются из него). Коррекция происходит при возникающих изменениях очень быстро. На рисунке показан принцип действия аддитивной коррекции смеси. Рис. Аддитивная коррекция смеси Пример аддитивной коррекции смеси Нагрузка и обороты — вычисленное ti + аддитивная коррекция = tik Холостые обороты 850 мин^-1 2 мс + например, 0,3 мс = 2,3 мс Частичная нагрузка 1150 мин^-1 2,8 мс + например, 0,3 мс = 3,1 мс Мультипликативная коррекция смеси Мультипликативная коррекция смеси эффективна в диапазонах частичной и полной нагрузки. При мультипликативной коррекции смеси базисное время впрыска умножается на определенное фиксированное значение коррекции (например 1,1 или 1,2). Преимущество мультипликативной коррекции смеси состоит в более оптимальной адаптации к различным диапазонам нагрузки в зависимости от оборотов и зависящего от них объема впрыска. Эффективность на холостом ходу здесь ниже, чем при аддитивной коррекции. С ростом оборотов и объема впрыска больше работает мультипликативная коррекция. Пример мультипликативной коррекции смеси Нагрузка и обороты — вычисленное ti * мультипликативная коррекция = tik Частичная нагрузка 2320 мин^-1 3,8мс * 1,2(+ 20%) = 4,2 мс Полная нагрузка 4450 мин^-1 10,0 мc * 1,2 (+ 20%)=12,0 мс Рис. Принцип мультипликативной коррекции смеси Регулирование мультипликативной коррекции также возможно лишь в заданных пределах. При достижении предельных значений или выходе за...

Диагностирование и ТО комбайнов и сельскохозяйственных машин

Диагностирование и ТО комбайнов и сельскохозяйственных машин

Диагностирование и обслуживание самоходных сельскохозяйственных машин имеет много общего с проверкой технического состояния тракторов. В то же время имеются и свои особенности, например, проверки параметров состояния специальных механизмов: режущих, измельчающих, молотильных, транспортирующих и др. Диагностирование самоходных машин проводят с помощью комплекта КИ-11382 при техническом обслуживании и по заявкам механизаторов. При ЕТО машин оценивают общее состояние гидросистемы и электрооборудования, проверяют состояние тормозов, натяжение ремней и цепей. Во время ТО-1 проверяют механизм уравновешивания жатки, плотность и уровень электролита в аккумуляторной батарее и давление воздуха в шинах. При ТО-2 проверяют свободный ход и усилие на ободе рулевого колеса, сходимость колес и свободный ход муфты включения и выключения сцепления. После эксплуатационной обкатки и при заявочном диагностировании проверяют предохранительные муфты, ход ножа жатки, погнутость валов и биение шкивов (звездочек), состояние подшипниковых узлов, зазоры в сборочных единицах, оценивают состояние узлов гидростатической трансмиссии и гидросистемы рулевого управления. Проверка погнутости валов и биение шкивов (звездочек) Для проверки биения закрепляют струбцину штатива с индикатором на угольнике или другой детали комбайна. Измерительный стержень индикатора подводят к поверхности вала на расстояние 5— 10 мм от конца, проворачивают вал и определяют биение по индикатору. Допустимые величины биения валов: валы молотильного барабана, главного контрпривода, приемного битера, промежуточного и отбойного битеров — 0,3 мм; коленчатые валы соломотрясов, соломонабивателя, половонабивателя, колебательный вал — 0,2; вал вентилятора — 0,4; заднего контрпривода — 1,0 мм. Если биение конца вала невозможно измерить без снятия шкива (звездочки), измеряют биение плоскости шкива (звездочки). Для этого ножку индикатора подводят к поверхности шкива (звездочки) на расстоянии 5-6 мм от края шкива или 3-5 мм от окружности впадин звездочки. Проворачивают шкив (звездочку) и определяют биение по индикатору. Осевое биение звездочек диаметром до 100, 100-200, 200-300, 300-400 мм допускается соответственно 0,35; 0,60; 0,75; 1,0 мин. Биение шкивов допускается в два раза больше, чем звездочек. Проверка узлов подшипников качения При осмотре подшипникового узла необходимо убедиться в отсутствии трещин на корпусе, течи смазки через уплотнения подшипников. Проверяют затяжку конусной втулки подшипника и ее шплинтовку. Перед определением радиального зазора в подшипнике ослабляют натяжение цепи (ремня). Затем резко двумя руками нажимают на звездочку (шкив) вверх и вниз. Если ощущается радиальный зазор в сопряжении, его величину измеряют с помощью индикаторного приспособления и сравнивают с допускаемым значением для данного вала. Прилагаемое усилие должно быть не менее 200-300 Н. Проверка натяжения и износа цепей Внешним осмотром оценивают состоянне цепных передач. Звенья цепи, имеющие распрессовку валиков, разрывы и деформацию пластин, разрушения роликов, подлежат замене. Излом и выкрашивание зубьев звездочек не допускается. Звездочка натяжного устройства должна находиться в одной плоскости с контуром цепной передачи. Отклонение от плоскости допускается не более 0,2 мм на каждые 100 мм межцентрового расстояния. Натяжение цепи проверяют устройством КИ-11403.01. Наконечник устройства вставляют между роликами звена в середине ведущей ветви цепи так, чтобы пятка подвижного штока опиралась на ролик (втулку). Затем наклоняют устройством звено вдоль цепи так, чтобы хвостовик штока совпал с меткой на корпусе устройства. По шкале устройства определяют угол наклона цепи, соответствующий степени ее натяжения. У передач с четырьмя звездочками натяжение проверяют по двум ведущим ветвям контура. При отсутствии устройства КИ-11403.01 натяжение цепи проверяют с помощью динамометра ДПУ-0,1,...

Данные контроля амортизаторов

Методы диагностирования амортизаторов и подвески

В практике диагностирования амортизаторов и подвески применяют метод измерения сцепления колес с дорогой и метод измерения амплитуды. Схема метода диагностирования по сцеплению колес с дорогой представлена на рисунке: Рис. Схема метода диагностирования амортизаторов по сцеплению колес с дорогой: 1 — колесо автомобиля; 2 — пружина; 3 — кузов; 4 — амортизатор; 5 — ось автомобиля; 6 — измерительная площадка При этом методе база колебаний в нижней части жесткая и подпружинена только в верхней части. Технология проверки амортизаторов и подвески при использовании метода сцепления колес с дорогой заключается в следующем. Сначала проверяемое колесо автомобиля устанавливается точно посередине измерительной площадки амортизаторного стенда. В состоянии покоя измеряется статический вес колеса. Затем включается привод перемещения одной из площадок в вертикальном направлении (сначала левой, потом правой). С помощью электродвигателя осуществляется периодическое возбуждение колебаний с частотой 25 Гц; при этом измерительная площадка перемещается как жесткое звено. Полученный в результате динамический вес колеса (вес на плите при частоте колебаний 25 Гц) сравнивается со статическим весом путем деления первого на второй. Пример. Пусть статический вес колеса при частоте 0 Гц равен 500 кг, а динамический вес при частоте 25 Гц равен 250 кг. Тогда коэффициент падения веса колеса (в процентах), измеренный по методу сцепления колес с дорогой, составит (250/500) * 100 = 50 %. Полученные значения коэффициента падения веса левого и правого колес и их разность (в процентах) выводятся на экран монитора. Состояние амортизаторов характеризуется следующими соотношениями: хорошее — не менее 70 % (для спортивной подвески — не менее 90 %) слабое — от 40 до 70 (от 70 до 90) дефектное — менее 40 % (от 40 до 70 %) Результаты оценки состояния амортизаторов не должны различаться более чем на 25 % по бортам транспортного средства. Обработка результатов базируется на эмпирических значениях, которые были получены с помощью серийных исследований автомобилей различных производителей. При этом предполагается, что у среднестатистического автомобиля жесткость амортизаторов, как правило, увеличивается с увеличением нагрузки на ось. Рассмотренный метод имеет следующие недостатки: результаты измерений зависят от давления воздуха в шине диагностируемого автомобиля; при диагностировании обязательно расположение колеса точно посередине площадки амортизаторного стенда; приложение постоянных внешних сил, боковых сил оказывает влияние на боковое перемещение автомобиля, что сказывается на результатах тестирования. Диагностирование по методу измерения амплитуды, применяемое на оборудовании фирм «Боге» и МАХА, более прогрессивное. Площадка стенда подвешена на гибком торсионе, база колебаний подпружинена как в верхней, так и в нижней части, что позволяет измерять не только вес, но и амплитуду колебаний на рабочих частотах. Технология проверки амортизаторов и подвески по методу измерения амплитуды заключается в следующем. Колесо автомобиля, установленное на площадку стенда, колеблется с частотой 16 Гц и амплитудой 7,5…9,0 мм. После включения электродвигателя стенда колесо автомобиля колеблется относительно покоящихся масс автомобиля, частота колебаний увеличивается до достижения резонансной частоты (обычно 6…8 Гц). Рис. Схема метода диагностирования амортизаторов по амплитудным колебаниям (обозначения те же, что на предыдущем рисунке) После прохождения точки резонанса принудительное возбуждение колебаний прекращается выключением электродвигателей стенда. Частота колебаний увеличивается и пересекает точку резонанса, в которой достигается максимальный ход подвески. При этом осуществляется измерение частотной амплитуды амортизатора. Рабочие характеристики амортизатора определяются в «дроссельном» и «клапанном»...

Требования по токсичности и дымности отработавших газов

Требования по токсичности и дымности отработавших газов

Требования к содержанию оксида углерода и углеводородов в отработавших газах двигателя, работающего на бензине, сжатом или сжиженном газе, а также бензогазовых смесях, установлены ГОСТ 17.2.2.03-87. Они не распространяются на транспортные средства, максимальная допустимая масса которых составляет менее 400 кг, максимальная скорость не превышает 50 км/ч, а также на автомобили с двухтактными и роторными двигателями. Согласно указанному стандарту содержание токсичных веществ следует определять при работе двигателя на холостом ходу при двух частотах вращения коленчатого вала: минимальной (nmin) и повышенной (nпов). Повышенная частота установлена в диапазоне от 2000 мин в -1 степени до 0,8nном, при этом nном — частота вращения коленчатого вала двигателя, при которой двигатель развивает номинальную мощность. Показатели минимальной и номинальной частоты вращения устанавливаются предприятием-изготовителем и указываются в инструкции по эксплуатации транспортного средства или двигателя. Содержание оксида углерода и углеводородов в отработавших газах автомобилей должно быть в пределах значений, установленных предприятием-изготовителем, но не выше значений, приведенных в таблице: Таблица. Нормативные значения токсичности отработавших газов бензинового и газового двигателей по ГОСТ 17.2.2.03—87 Частота вращения Предельно допустимое содержание оксида углерода, объемная доля, % Предельно допустимое содержание углеводородов, объемная доля, млн»1, для двигателей с числом цилиндров не более 4 более 4 пшт 1,5 1200 3000 ппов 2,0 600 1000 Для проверки токсичности автомобиль должен быть подготовлен следующим образом: пробоотборный зонд газоанализатора должен быть установлен в выпускную трубу автомобиля на глубину не менее 300 мм от среза перед измерением следует увеличить частоту вращения двигателя до nпов и дать ему поработать в этом режиме не менее 15 с, после чего установить режим минимальных оборотов холостого хода измерение в режиме минимальных оборотов холостого хода следует проводить не ранее чем через 20 с после стабилизации работы двигателя на данных оборотах измерение в режиме повышенных оборотов следует проводить не ранее чем через 30 с после установки данного режима при наличии раздельных выпускных систем у автомобиля измерение следует проводить в каждой из них отдельно. Критерием оценки при этом служат максимальные значения содержания оксида углерода и углеводородов Нормы и методы измерения дымности отработавших газов дизельных двигателей в Республике Беларусь регламентированы ГОСТ 21393-75. Согласно данному стандарту дымность проверяется в режиме свободного ускорения и максимальной частоты вращения коленчатого вала двигателя. Свободное ускорение — это разгон двигателя от минимальной до максимальной частоты вращения на холостом ходу. Максимальная частота вращения — это частота вращения коленчатого вала двигателя на холостом ходу при полностью нажатой педали подачи топлива, ограниченная регулятором. В качестве параметров контроля дымности применяют натуральный показатель ослабления светового потока К и коэффициент ослабления светового потока N. Соотношение этих показателей выражается формулой. Эффективная база — это толщина оптически однородного слоя эталонных газов, эквивалентного по ослаблению светового потока столбу тех же отработавших газов, заполняющих трубу дымомера в условиях измерения. За эффективную базу дымоме- ра принимается расстояние, равное 0,43 м. В автомобилях с дизельным двигателем при испытании не должны превышаться значения дымности, указанные в таблице: Таблица. Нормативные значения дымности отработавших газов дизельного двигателя Режим измерения дымности Предельно допустимый натуральный показатель ослабления светового по­тока Кдоп, м-1, не более Предельно допустимый коэффициент ослабления светового потока ^оп, %, не более Свободное ускорение для автомобилей: без наддува 1,2 40 с наддувом...

Схема процесса диагностирования

Процесс диагностирования

В общем случае процесс технического диагностирования включает следующие элементы: обеспечение функционирования объекта в заданных режимах или тестовое воздействие на объект улавливание с помощью датчиков сигналов, выражающих значения диагностических параметров, их преобразование и измерение постановка диагноза на основании логической обработки полученной информации путем сопоставления с нормативами Рис. Схема процесса диагностирования: S — диагностический параметр; S’ — диагностический параметр в трансформированном виде; Si — текущее значение диагностического параметра; Sном — номинальное значение; Sд — допустимое значение диагностического параметра; Sп — предельное значение Диагностирование осуществляется либо в процессе работы самого транспортного средства, его агрегатов и систем в заданных нагрузочных, скоростных и тепловых режимах (функциональное диагностирование), либо при использовании внешних приводных устройств (роликовых стендов, подкатных и переносных приспособлений), с помощью которых на автомобиль оказываются тестовые воздействия (тестовое диагностирование). Эти воздействия должны обеспечивать получение максимальной информации о техническом состоянии объекта при оптимальных трудовых и материальных затратах. Как показано на рисунке, от объекта диагностирования, выведенного в заданный режим, с помощью специального датчика (механического, гидравлического, пьезоэлектрического, индукционного и др.) воспринимается сигнал, отражающий диагностический параметр S, характеризующий, в свою очередь, значение структурного параметра. Различают легкосъемные и встроенные датчики. Первые устанавливаются на объект на время диагностирования (магнитные, навесные, на зажимах и т.п.), а вторые являются элементами конструкции автомобиля. Встроенные датчики могут быть подключены к контрольным приборам для постоянного наблюдения или к централизованным штепсельным разъемам. От датчика сигнал в трансформированном виде S’ поступает в измерительное устройство, затем значение диагностического параметра Si выдается устройством отображения данных (стрелочный прибор, цифровая индикация, графопостроитель и т.п.). В автоматизированных СТД с помощью специального логического устройства, функционирующего на базе микропроцессора, выполняется автоматическая постановка диагноза, а также выдаются рекомендации в нормативной форме о возможности дальнейшей эксплуатации или необходимости проведения ремонтно-регулировочных операций и замены неисправных элементов. В неавтоматизированных СТД постановка диагноза осуществляется оператором. В зависимости от задач диагностирования и сложности объекта диагнозы могут различаться по глубине. Для оценки работоспособности агрегата, системы, автомобиля в целом используются выходные параметры, на основании которых ставится альтернативный диагноз («годен» — «не годен»). Для определения потребности в ремонтно-регулировочной операции требуется более глубокий диагноз, основанный на локализации конкретной неисправности. Постановка диагноза в случае, когда приходится пользоваться одним диагностическим параметром, не вызывает особых методических трудностей. Она сводится к сравнению измеренного значения диагностического параметра с нормативным. Если производится поиск неисправности сложного механизма или системы и используется несколько диагностических параметров, постановка диагноза существенно усложняется. В этом случае необходимо на основании данных о надежности объекта выявить связи между его наиболее вероятными неисправностями и используемыми диагностическими параметрами. Для этой цели в практике диагностирования транспортных средств наиболее часто применяют диагностические матрицы.

✪Устройство автомобиля Авто⚡сайт №❶