В настоящее время большинство легковых автомобилей оборудованы передней подвеской типа McPherson. По другому ее еще называют «качающаяся свеча». Это независимая подвеска, которая создана более пятидесяти лет назад специально для переднеприводных автомобилей. Появилась она в 1949 году, когда автомобили начали оснащать приводом передних колес. Для этого двигатель размещали поперечно, что занимало намного больше места под капотом. Также, многорычажная подвеска на то время не позволяла совмещать ее с шарнирами равных угловых скоростей. Для того, чтобы упростить всю эту конструкцию и был разработан данный тип подвески.
Подвеска типа McPherson состоит из одного нижнего рычага и амортизатора, который выполняет роль стойки. Сверху амортизатор крепится к брызговику крыла через упорный подшипник. В основном он состоит из двух частей — самого подшипника и подушки. Таким образом он исполняет сразу две функции. С одной стороны вращается при вывороте руля, а со второй — гасит колебания подвески. Здесь очень важную роль играет наклон стойки, причем не только продольный, но и поперечный.
Основным преимуществом такого типа подвески является ее простота, так что ее ремонт и обслуживание намного проще, чем у многорычажной. Подвеска McPherson занимает намного меньше места, а кроме этого она одновременно работает и как направляющий, и как упругий элемент. Такая конструкция намного надежнее, ведь основная нагрузка ложится на верхнюю опору стойки.
Недостатком данной конструкции является слишком большое усилие, передаваемое на крыло. Очень часто у автомобилей с подвеской McPherson после пробега в 100 000 км встречается разрыв на месте сварных швов. Данную подвеску не устанавливают на автомобилях высокого класса, ведь использование такой конструкции вызывает небольшую вибраций и шум. Причем изолировать этот шум практически невозможно.
Двигатель укреплен на шасси автомобиля в трех точках. Для уменьшения передачи вибрации двигателя на кузов, а также для предотвращения передачи ударных нагрузок на двигатель при движении автомобиля по неровностям дороги, двигатель опирается па резиновые подушки.
Две передние точки крепления расположены ближе к центру тяжести двигателя, что способствует уменьшению передачи вибраций кузову. Задняя точка крепления расположена под удлинителем коробки перемены передач. Конструкция подвески исключает возможность непосредственного контакта металлических деталей, Вследствие чего значительно уменьшаются шумы и стуки, передающиеся внутрь кузова.
К блоку цилиндров двигателя прикреплены два кронштейна 7 (правый) и 2 (левый), которые опираются через переходники 3 на резиновые подушки 4. К каждой подушке привулканизированы две пластины — верхняя и нижняя. На верхней пластине У укреплены два болта 10 для крепления подушек к переходникам 3. К нижним пластинам 8 подушек приварены бойки 7, имеющие резьбовые отверстия для крепления подушек болтами к кронштейнам 6 поперечины передней подвески. Для того чтобы при установке двигателя на шасси резьбовые отверстия в нижних пластинах подушек совпадали с отверстиями в кронштейнах 5, в пластинах 8 имеются установочные штифты 11, входящие в соответствующие отверстия в кронштейнах 5.
Рис. Подвеска двигателя: а — передняя; б — задняя; 1 — правый кронштейн; 2 — левый кронштейн; 3 — переходник; 4 — полушка передней подвески; 5 — кронштейн поперечины передней подвески; 6 — балка передней подвески; 7 — бонка; 8 — нижняя пластина подушки; 9 — верхняя пластина подушки; 10 и 18 — болты; 1 — установочный штифт; 12 — кронштейн задней подвески; 18 — подушка задней подвески; 14 — поперечина задней подвески; 15 — прокладка поперечины; 16 — пластина; 17 — кронштейн задней подвески; 19 — верхняя обойма подушки; 20 — нижняя обойма подушки
Задняя подвеска двигателя состоит из фасонной подушки 13, поперечины 14 и кронштейна 12. К подушке 13 привулканизированы верхняя и нижняя штампованные обоймы 19 и 20 с укрепленными в них болтами 18. Обойма 19 гайками прикреплена к кронштейну 12, который, в свою очередь, крепится к переднему фланцу удлинителя коробки перемены передач. Обойма 20 гайками прикреплена к поперечине 14.
Поперечина 14 задней подвески прикреплена с помощью резиновых прокладок 15 к кронштейнам 17, приваренным к лонжеронам рамы кузова. Затяжка резиновых прокладок 15 ограничивается распорными втулками.
Подушка 13 задней подвески двигателя, входя в поперечину 14, удерживает двигатель от продольных перемещении при выключении сцепления, а также воспринимает инерционные нагрузки, возникающие при разгоне и торможении автомобиля.
Специального ухода за деталями подвески двигателя в эксплуатации не требуется. При проведении технических осмотров следует проверять и, если требуется, подтягивать крепежные детали и удалять масло и грязь с резиновых подушек.
При этом методе база колебаний в нижней части жесткая и подпружинена только в верхней части. Технология проверки амортизаторов и подвески при использовании метода сцепления колес с дорогой заключается в следующем. Сначала проверяемое колесо автомобиля устанавливается точно посередине измерительной площадки амортизаторного стенда. В состоянии покоя измеряется статический вес колеса. Затем включается привод перемещения одной из площадок в вертикальном направлении (сначала левой, потом правой). С помощью электродвигателя осуществляется периодическое возбуждение колебаний с частотой 25 Гц; при этом измерительная площадка перемещается как жесткое звено. Полученный в результате динамический вес колеса (вес на плите при частоте колебаний 25 Гц) сравнивается со статическим весом путем деления первого на второй.
Пример. Пусть статический вес колеса при частоте 0 Гц равен 500 кг, а динамический вес при частоте 25 Гц равен 250 кг. Тогда коэффициент падения веса колеса (в процентах), измеренный по методу сцепления колес с дорогой, составит (250/500) * 100 = 50 %.
Полученные значения коэффициента падения веса левого и правого колес и их разность (в процентах) выводятся на экран монитора.
Состояние амортизаторов характеризуется следующими соотношениями:
хорошее — не менее 70 % (для спортивной подвески — не менее 90 %)
слабое — от 40 до 70 (от 70 до 90)
дефектное — менее 40 % (от 40 до 70 %)
Результаты оценки состояния амортизаторов не должны различаться более чем на 25 % по бортам транспортного средства. Обработка результатов базируется на эмпирических значениях, которые были получены с помощью серийных исследований автомобилей различных производителей. При этом предполагается, что у среднестатистического автомобиля жесткость амортизаторов, как правило, увеличивается с увеличением нагрузки на ось.
Рассмотренный метод имеет следующие недостатки: результаты измерений зависят от давления воздуха в шине диагностируемого автомобиля; при диагностировании обязательно расположение колеса точно посередине площадки амортизаторного стенда; приложение постоянных внешних сил, боковых сил оказывает влияние на боковое перемещение автомобиля, что сказывается на результатах тестирования.
Диагностирование по методу измерения амплитуды, применяемое на оборудовании фирм «Боге» и МАХА, более прогрессивное. Площадка стенда подвешена на гибком торсионе, база колебаний подпружинена как в верхней, так и в нижней части, что позволяет измерять не только вес, но и амплитуду колебаний на рабочих частотах.
Технология проверки амортизаторов и подвески по методу измерения амплитуды заключается в следующем. Колесо автомобиля, установленное на площадку стенда, колеблется с частотой 16 Гц и амплитудой 7,5…9,0 мм. После включения электродвигателя стенда колесо автомобиля колеблется относительно покоящихся масс автомобиля, частота колебаний увеличивается до достижения резонансной частоты (обычно 6…8 Гц).
Рис. Схема метода диагностирования амортизаторов по амплитудным колебаниям (обозначения те же, что на предыдущем рисунке)
После прохождения точки резонанса принудительное возбуждение колебаний прекращается выключением электродвигателей стенда. Частота колебаний увеличивается и пересекает точку резонанса, в которой достигается максимальный ход подвески. При этом осуществляется измерение частотной амплитуды амортизатора.
Рабочие характеристики амортизатора определяются в «дроссельном» и «клапанном» режимах. В дроссельном режиме, когда максимальная скорость поршня не более 0,3 м/с, клапаны отбоя и сжатия в амортизаторе не открываются. В клапанном режиме, когда в амортизаторе максимальная скорость поршня более 0,3 м/с, клапаны отбоя и сжатия открываются, причем тем больше, чем больше скорость поршня.
Диаграммы при испытании амортизатора на стенде записываются в дроссельном режиме при частоте 30 циклов в минуту, ходе поршня 30 мм, максимальной скорости 0,2 м/с. В случае, когда амортизатор испытывается в амортизаторной стойке, ход поршня составляет 100 мм. Диаграммы записываются в клапанном режиме при частоте 100 циклов в минуту, таком же ходе поршня, что и в дроссельном режиме, и при максимальной скорости поршня 0,5 м/с.
При испытании амортизаторов дефектом считается появление жидкости на штоке и у верхней кромки манжеты стойки или сальника амортизатора при условии, что жидкость появляется вновь после протирки места течи. Дефектом считается наличие стуков, скрипов и других шумов, за исключением звуков, которые связаны с перетеканием жидкости через клапанную систему, а также наличие избыточного количества жидкости («подпор»), эмульсирование жидкости, недостаточное количество жидкости («провал»).
Дефектом считается и отклонение формы кривых диаграмм от эталонной. На рисунек показана эталонная форма диаграммы и форма диаграммы амортизатора с дефектами.
Рис. Диаграммы работы исправного и дефектного амортизаторов: I, II, III — участки, свидетельствующие о наличии соответственно эмульсирования жидкости, «провала» и «подпора»; Ро, Рс — силы сопротивления при ходе отбоя и ходе сжатия
Амплитуда колебаний определяется по движению следующей за колесом проверочной площадки и регистрируется. При этом измеряется также максимальное отклонение (максимальная амплитуда колебаний). Оно пересчитывается и показывается на экране монитора раздельно для левого и правого амортизаторов. По графику колебаний на экране монитора можно оценить эффективность амортизаторов, даже не зная параметров, заложенных изготовителем: чем меньше амплитуда резонанса на графике, тем лучше работает амортизатор.
Рис. Амплитуда колебаний амортизатора
Пример документирования результатов проверки амортизаторов передней и задней осей автотранспортного средства на стенде показан на рисунке.
Рис. Данные контроля амортизаторов
Измеренные для каждого колеса на резонансной частоте значения амплитуды колебаний выводятся в миллиметрах. Кроме того, для обоих амортизаторов одной оси выводятся разности хода колес. Благодаря этому можно судить о взаимном влиянии обоих амортизаторов одной оси.
Состояние амортизаторов по амплитудному показателю определяется следующим образом:
хорошее — 11…85 мм (для задней оси массой до 400 кг — 11.75 мм)
плохое — менее 11
изношенное — более 85 мм (для задней оси массой до 400 кг — более 75 мм).
Разность хода колес не должна превышать 15 мм.
На стендах для проверки амортизаторов, например фирмы МАХА, можно производить поиск шумов подвески. В этом режиме оператор может сам задавать частоту вращения ротора (от 0 до 50 Гц). Без режима поиска шумов источник шума необходимо искать за доли секунды, пока затухают колебания подвески.
ТО стендов для проверки амортизаторов и подвески включает проверку крепления стенда к основанию, а также всех резьбовых соединений через каждые 200 ч работы и не реже одного раза в год. Через каждые 200 ч работы рычаги стенда смазывают густой смазкой.
Совокупность устройств, осуществляющих упругое соединение подрессоренных и неподрессоренных масс автотранспортного средства, называют подвеской. Она существенно уменьшает динамические нагрузки, воздействующие на подрессоренную массу автомобиля. Подвеска включает в себя три основных устройства: направляющее, упругое и демпфирующее.
Направляющее устройство передает на несущую систему автомобиля действующие на колесо продольные и боковые силы, а также моменты этих сил. Кинематика направляющего устройства задает характер перемещения колеса относительно несущей системы.
Упругое устройство служит для передачи вертикальных сил, действующих на колесо со стороны дороги, а также для снижения динамических нагрузок и повышения плавности хода.
В качестве дополнительного специального упругого устройства на скоростных автотранспортных средствах применяют стабилизаторы поперечной устойчивости, препятствующие чрезмерным боковому крену при прохождении поворотов и поперечным угловым колебаниям подрессоренной массы.
Конструктивное решение подвески должно реализовать требуемую плавность хода, а кинематика ее обеспечивает надлежащую устойчивость и управляемость транспортного средства. Существенная роль в удовлетворении указанных требований принадлежит упругим и демпфирующим устройствам.
Демпфирующее устройство служит для гашения колебаний подрессоренной и неподрессоренной масс автомобиля путем преобразования энергии колебаний в тепловую с дальнейшим рассеиванием ее в окружающее пространство. Эту роль выполняют амортизаторы.
Для ряда автотранспортных средств целесообразно автоматическое регулирование высоты кузова над опорной поверхностью дороги, которое в принципе осуществимо при любом конструктивном решении подвески, но наиболее просто реализуется при пневматических, гидравлических или комбинированных — гидропневматических упругих устройствах.
По виду упругой среды такие устройства делят на металлические (рессорные, пружинные, торсионные) и неметаллические (гидравлические, пневматические и гидропневматические).
Нередко упругое и демпфирующее устройства объединяют в единый конструктивный узел или систему, обеспечивая ряд преимуществ. Наиболее часто это реализуют при гидравлических и гидропневматических упругих устройствах.
После пробега первых 1000 км, а затем каждые 20000 км проверить и, в случае необходимости, затянуть с соответствующими усилиями все резьбовые соединения.
Рис. Задняя подвеска: а — внешний вид (на предыдущей странице), b — схемы, 1 — винтовая пружина, 2 — амортизатор, 3 — поперечный рычаг, 4 — буфер сжатия, 5 — продольный маятниковый рычаг, 6 — балка задней оси.
Задняя подвеска дает возможность плавного движения автомобиля во время поездки по неровной поверхности дороги. Подвеска зависима, оба колеса установлены на одной оси, в результате чего вертикальное перемещение одного колеса вызывает определенное перемещение другого. Трубчатая балка оси продольно зафиксирована с помощью двух продольных маятниковых рычагов. От поперечного смещения задняя ось фиксируется поперечным рычагом. Вибрация задней оси гасится двумя телескопическими амортизаторами двухстороннего действия. Составные части задней подвески, а также усилия, с которыми должны быть затянуты различные винтовые соединения, показаны на рисунках.
Рис. Составные части задней подвески (элементы крепления задней оси): 1 — винтовая пружина, 2 — продольный маятниковый рычаг, 3 — поперечный рычаг, 4 — амортизатор
После пробега 1000 км, а затем каждые 10000 км проверить на станции обслуживания на специальном стенде развал передних колес. В случае необходимости — отрегулировать. В случае изменения угла установки колес (нерегулируемого), установить причину и заменить деформированные детали.
Каждые 20000 км пробега проверить и, в случае необходимости, затянуть все винтовые соединения.
Передняя подвеска дает возможность плавного перемещения автомобиля при движении по неровной поверхности дороги.
Подвеска колес независимая, что означает независимость перемещения передних колес друг от друга относительно кузова. Перемещение передних колес обеспечивается телескопической стойкой, эластично закрепленной в верхней части, нижнего поперечного маятникового рычага и стабилизатора, который, кроме функции поперечной стабилизации кузова, выполняет роль продольного реактивного рычага. На телескопической стойке устанавливается витая цилиндрическая пружина, а в верхней части — резиновый буфер сжатия. Применяемый гидравлический телескопический амортизатор выполняет функцию гасителя колебаний колеса, и одновременно, вместе с нижней шаровой опорой обеспечивает возможность поворота колеса.
Ходовая часть автомобиля состоит из трех основных элементов:
остова;
движителя;
подвески.
Остов
Остов является основанием машины, связывающим все механизмы в единое целое. Он может быть рамным, полурамным и безрамным. У легковых автомобилей роль рамы выполняет кузов, называемый несущим. Для крепления двигателя и передней подвески служит короткая рама, прикрепленная к полу кузова.
Движитель
Различают следующие типы движителей:
колесные
гусеничные
полугусеничные
Колесный движитель представляет собой колеса с пневматическими шинами. У гусеничного движителя опорные катки катятся по гладкому искусственному пути, который образуется бесконечной гусеничной цепью. Полугусеничный движитель состоит из резинометаллической гусеницы, установленной между ведущим колесом с пневматической шиной и натяжным колесом.
Пневматическое колесо состоит из:
диска
обода
эластичной шины
По устройству различают шины:
камерные
бескамерные
Основные части камерной шины — покрышка, камера с вентилем и ободная лента. Ободную резиновую ленту размещают между камерой и ободом, предотвращая трение между ними. Ободные ленты применяют только в колесах грузовых автомобилей.
Бескамерные шины широко применяют на легковых и грузовых автомобилях и тракторах. В таких шинах пространство, заполняемое воздухом, образуется в результате герметичного соединения обода колеса с покрышкой, а вентиль при этом размещается на ободе. Герметичная посадка бескамерной шины на обод достигается при помощи специальной конструкции борта, плотно прижимающегося к закраинам обода внутренним давлением воздуха.
Бескамерные шины могут быть обычного типа, широкопрофильные и арочные. Арочные шины способствуют повышению проходимости автомобиля в трудных дорожных условиях. Это шины низкого давления (0,05…0,08 МПа).
Внутреннее давление воздуха в шинах автомобилей колеблется в пределах 0,17…0,5 МПа, тракторов — 0,08…0,25 МПа.
Подвеска
Остов с колесами соединяет подвеска. Она предназначена для смягчения возникающих во время движения толчков и ударов, повышения плавности хода машины.
Различают подвески двух основных типов: зависимые и независимые. В зависимой подвеске оба колеса подвешены к раме 4 (рисунок а) на общей оси 1, вследствие чего перемещение каждого из них происходит вместе с осью. В независимой подвеске каждое колесо подвешено к раме 2 (рисунок б) независимо от другого при помощи рычагов 1, 4 и стойки 5. В качестве упругих элементов в различных подвесках используют рессоры, пружины, торсионы, резиновые баллоны и др. У автомобилей подвеской оборудованы передние и задние мосты, у тракторов — только передние, так как их задний мост составляет часть остова.
Подвески грузовых автомобилей зависимые. Их чаще всего выполняют на пластинчатых рессорах. Такая рессора представляет собой балку, опирающуюся на раму в двух точках — опорах, одна из которых выполнена в виде шарнира, а другая допускает некоторое перемещение. Средняя часть рессоры соединена стремянками 12 с передним или задним мостом.
При движении автомобиля по неровностям дороги возникают колебания, которые частично гасятся за счет трения в рессорах. Однако это трение относительно мало, и для эффективного гашения колебаний применяют специальные устройства — амортизаторы 7. Наиболее распространены гидравлические амортизаторы двустороннего действия. Их работа основана на том, что при относительных перемещениях подрессоренных и неподрессоренных масс автомобиля (трактора) находящаяся в амортизаторе жидкость перетекает из одной его полости в другую через небольшие проходные сечения, вследствие чего создается сопротивление, поглощающее энергию колебаний.
Проблема истирания и уплотнения плодородных почв возникла в результате увеличения числа машин, используемых в сельском хозяйстве. Кроме того, значительно возросла их масса. Так, широко распространенный трактор К-701 имеет массу более 12 т, а автомобиль КамАЗ — более 7 т.
В результате указанной тенденции суммарная площадь следов колес (гусениц) достигает 50..,200% площади обрабатываемого поля, плотность почвы в следе увеличивается в 1,1…1,2 раза по сравнению с неуплотненными участками, структура ее ухудшается. Вследствие этого снижается урожайность на площади следов колес и гусениц, увеличивается сопротивление почв обработке рабочими органами машин.
Установлено, что после прохода тракторов изменяется структура почвы: увеличивается (на 15…20%) число комков крупнее 10 мм и соответственно уменьшается число и размером 0,25…10 мм, резко увеличивается число частиц менее 0,25 мм. Такое изменение структуры происходит до глубины 30…60 см (в зависимости от массы агрегата, кратности проходов по одному следу, типов и состояния почвы).
Колеса и гусеницы машин уплотняют почву на глубину до 50 см. Наиболее сильно уплотняются верхние ее слои (до 20 см). После прохода машин плотность почвы в верхних слоях повышается на 6…20%. Установлено, что повышенная плотность сохраняется в течение 1 …3 лет в слоях почвы, не подвергающихся обработке, и увеличивается при последующих проходах.
Изменение плотности почвы приводит к существенному росту ее твердости. Так, твердость дерново-подзолистых почв и черноземов в слое 0…10см после одного прохода трактора типов МТЗ, Т-150 и К-701 возрастает в среднем в 1,8…5 раз. При увеличении кратности проходов твердость почвы соответственно повышается.
Уплотнение почвы ходовыми системами машин происходит из-за уменьшения ее пористости, что приводит к уменьшению фильтрующей способности почвы, а следовательно, и к существенному снижению доступа влаги и воздуха в нее.
Колесные и гусеничные тракторы в пятне контакта с почвой создают в течение долей секунды давление от 0,05 до 0,5 МПа. Это давление действует в слое почвы 0…50 см, уменьшаясь по мере увеличения глубины. При таких давлениях и времени их приложения гибнут гумусообразующие и рыхлящие почву живые организмы, обитающие в верхних ее слоях. От контакта с движителями разрушается структура верхнего слоя почвы — она измельчается. Вследствие этого усиливаются процессы эрозии почвы — из нее более интенсивно выветриваются и вымываются наиболее плодородные компоненты. Все это приводит к снижению плодородия почвы, а следовательно, и урожайности сельскохозяйственных культур.
Для снижения вредного воздействия движителей на почву целесообразно применять гусеничные тракторы. Однако они менее универсальны, чем колесные.
Чтобы снизить отрицательное воздействие ходовых систем машин, уменьшают их давление на почву, используют широкозахватные рабочие орудия (это позволяет уменьшить число проходов машин по полю и площадь следов колес и гусениц) и комбинированные МТА (в этом случае можно не только сократить число проходов по полю, но и использовать привод колес рабочих орудий и прицепов для увеличения силы тяги без повышения веса трактора), устанавливают шины низкого давления (0,08…0,12 МПа) или арочные шины, сдваивают колеса, применяют постоянную двухследную технологическую колею для возделывания сельскохозяйственных культур.
В пневматической подвеске положение каждого отдельного колеса определяется не с помощью пружин, а посредством сжатого воздуха, необходимое количество которого быстро подводится или отводится через электромагнитные клапаны к имеющим особую конструкцию амортизаторам.
Рис. Пневматическая подвеска: 1 – блок управления подвеской; 2 – блок управления двигателем; 3, 6 – задняя стойка с пневмоэлементом; 4 – правый задний датчик положения кузова; 5 – компрессор пневмоподвески; 7 – датчик ускорения кузова; 8, 13 – датчик ускорения колеса; 9 – левый задний датчик положения кузова; 10 – ресивер; 11 – левый передний датчик положения кузова; 12, 16 – передняя стойка с пневмоэлементом; 14 – правый передний датчик положения кузова; 15 – блок управления АБС
Узлы и механизмы пневматической подвески
передних и задних пневматических амортизационных стоек
компрессора
ресивера
блока управления и датчиков, информирующих блок управления о скорости движения, нагрузке автомобиля и угле поворота рулевого колеса
Узлы и механизмы подвески соединены друг с другом воздушными магистралями и подключены в электрическую систему автомобиля с помощью многофункциональной шины электронной передачи данных CAN. Подвеска автоматически активизируется, как только открывается дверь автомобиля. Таким образом, еще до начала движения корректируются клиренс и упругость пневматических амортизаторов.
После этого в работу подвески имеет право вмешаться и сам водитель, который, во-первых, может установить нужный дорожный просвет, подняв или опустив кузов автомобиля, что, например, пригодится для более удобной загрузки багажника либо присоединения прицепа. Во-вторых, можно выбрать режим – комфортный или спортивный, в котором будет работать подвеска во время движения. Режим «комфорт» позволяет водителю и пассажирам буквально «парить» над дорогой. Режим «спорт» улучшает устойчивость и безопасность на больших скоростях движения. Вместе с тем индивидуальное регулирование жесткости амортизаторов на каждом колесе по отдельности позволяет учитывать крен кузова и скорость, с которой автомобиль входит в поворот, оценивать угол поворота и скорость, с которой водитель поворачивает руль. Тем самым жесткость амортизационных стоек может автоматически изменяться в движении так, что будет найден самый оптимальный и эффективный режим работы подвески, адекватно отвечающий конкретным дорожным условиям как с точки зрения безопасности, так и комфортности. Например, при торможении передние колеса будут подрессориваться более жестко, чем задние, а при ускорении — наоборот, но это в обоих случаях позволит избежать неприятного продольного «клевка» кузова.
Пневматическая подвеска автоматически приспосабливается к различной загрузке автомобиля и способна выбирать величину дорожного просвета, ориентируясь на дорожные условия.
Рис. Последовательность процессов автоматического повышения и снижения уровня кузова (на примере Вольксваген Фаэтон): HN – повышенный уровень; NN – номинальный уровень; TN – пониженный уровень
Номинальный уровень дорожного просвета устанавливается и автоматически поддерживается постоянным при движении со скоростью 80 км/ч и выше, а также во время быстрого разгона до скорости 120 км/ч.
Автоматическое снижение уровня дорожного просвета до номинального (NN) на 25 мм при повышенном уровне HN происходит при скоростях более 120 км/ч. Если уровень был номинальным (NN), снижение уровня дорожного просвета до пониженного (TN) на 15мм ниже номинального происходит через 30 с после превышения скорости 140 км/ч или менее чем через 30 с, если скорость достигнет 180 км/час. Понижение центра тяжести делает автомобиль более устойчивым, а также одновременно улучшает аэродинамические характеристики, что в свою очередь значительно снижает расход топлива
Автоматическое повышение уровня дорожного просвета от пониженного (TN) до номинального (NN) происходит через 60 с после снижения скорости до 100 км/ч или менее чем через 60 с, если скорость станет менее 80 км/час.
Чтобы выбрать уровень дорожного просвета кузова, следует нажать предназначенную для этого клавишу и на дисплей выводится изображение, соответствующее выбранному уровню кузова (повышенный HN или номинальный NN). Номинальный дорожный просвет устанавливается по умолчанию.
Уровень дорожного просвета кузова определяется четырьмя датчика уровня кузова, установленными между подрамниками и нижними рычагами подвески. Результаты измерений сравниваются с заданными величинами, сохраняемыми в памяти блока управления. Заданные величины вводятся в память для каждого автомобиля индивидуально.
Воздух, необходимый для регулирования подвески, обычно подается компрессором под давлением до 16 кгс/см2. Компрессор обеспечивает регулирование уровня кузова при скоростях автомобиля свыше 35 км/ч. При необходимости сжатый воздух подается также в ресивер. При скоростях ниже 35 км/ч регулирование уровня кузова осуществляется за счет подачи воздуха из ресивера.
Если дорожный просвет автомобиля изменяется в результате его загрузки или разгрузки, блок управления включает систему регулирования, возвращающую кузов на первоначально заданный уровень. При этом подача воздуха из упругих элементов производится через соответствующие им электромагнитные клапаны, а выпуск из них осуществляется через выпускной клапан.
Пневматический упругий элемент
Основной составляющей пневматической подвески является пневматический упругий элемент, который состоит из:
корпуса с наружной направляющей
манжеты
поршня (являющегося нижней частью корпуса элемента)
дополнительного пневмоакумулятора (в некоторых конструкциях)
Манжета пневматического упругого элемента изготовляется из специального многослойного высококачественного эластомера, армированного полиамидной кордовой тканью, которая придает ему необходимую прочность. Корд воспринимает усилия, передаваемые на упругий элемент. Изнутри манжета покрыта защитным слоем, обеспечивающим ее герметичность. Комбинацией слоев корда достигается необходимая гибкость манжеты при ее перекатывании и высокая чувствительность упругого элемента к изменению нагрузки.
Блок управления оснащен двумя дублирующими друг друга процессорами, из которых один в первую очередь отрабатывает алгоритм управления пневматическими элементами, а другой регулирует сопротивление амортизаторов.
Система регулирования сопротивления амортизаторов обрабатывает сигналы четырех датчиков ускорений колес и трех датчиков ускорений кузова и оценивает по результатам этой обработки состояние дороги и движения автомобиля. В результате производится изменение характеристик каждого из амортизаторов в соответствии с рассчитанной интенсивностью гашения колебаний. При этом амортизаторы работают на ходах сжатия и отдачи как полуактивные компоненты. Бесступенчатое регулирование демпфирования производится благодаря применению амортизаторов, характеристики которых изменяются посредством электрических исполнительных устройств. Эти амортизаторы встроены в стойки с пневматическими упругими элементами. Силы сопротивления амортизатора регулируются посредством встроенного в него пропорционально действующего (электромагнитного) клапана. Регулирование производится по многопараметровой характеристике. Изменение сопротивления амортизаторов в зависимости от характера движения автомобиля и состояния дороги производится в течение нескольких миллисекунд.
Принципиально изменение сопротивления амортизаторов производится в соответствии с так называемой «стратегией подвески к небу». Регулирование амортизаторов производится в зависимости от вертикальных ускорений колес и кузова автомобиля. В идеальном случае регулирование осуществляется таким образом, как будто кузов автомобиля подвешен на крюке к небу и плывет над дорогой, практически не повторяя неровностей дороги. Так достигается максимальная комфортабельность автомобиля.
Двухтрубный газонаполненный амортизатор типа CDC (амортизатор с гидравлическим демпфированием) оснащен встроенным в поршень или установленным снаружи амортизатора электромагнитным клапаном, который позволяет изменять степень демпфирования амортизатора. Изменением тока, проходящего по обмотке электромагнитного клапана, можно в течение нескольких миллисекунд изменить его проходное сечение и, следовательно, сопротивление амортизатора в соответствие с текущей потребностью.
Рис. Амортизатор с регулируемым сопротивлением перетекания жидкости: 1 – дополнительные клапана; 2 – цилиндр амортизатора; 3 – корпус амортизатора; 4 – корпус клапана; 5 – кабель подвода тока; 6 – полый шток поршня; 7 – обмотка электромагнитного клапана; 8 – якорь; 9 – пружина клапана; 10 – главный клапан амортизатора; 11 – потоки рабочей жидкости
Расчет потребного сопротивления амортизаторов при данных условиях движения автомобиля производится на основании сигналов датчиков всех ускорений колес автомобиля, установленных на каждом из амортизаторов, и датчиков ускорений кузова. Благодаря высокой скорости распознавания и регулирования процессов демпфирования при ходе сжатия и отдачи обеспечивается установка характеристики сопротивления амортизатора строго в соответствии с моментальным состоянием движения автомобиля. Многопараметровые зависимости сопротивления амортизаторов от условий движения автомобиля записаны в памяти блока управления уровнем кузова.
Чтобы выбрать настройку амортизаторов, следует нажать предназначенную для этого клавишу. Вращая поворотно-нажимную ручку, можно выбрать один из четырех вариантов настройки амортизаторов:
«Комфорт»
базовый (устанавливается по умолчанию)
спортивный вариант
Сжатие воздуха производится в компрессоре (на примере Фольксваген Фаэтон). Компрессор одноступенчатый поршневой с встроенным осушителем воздуха. Чтобы предотвратить загрязнение манжет упругих элементов и осушителя воздуха, компрессор приспособлен для работы без смазки его цилиндра. Необходимый срок службы компрессора обеспечивается применением одноразовой смазки подшипников и фторопластового поршневого кольца.
В корпусе осушителя расположены выпускной трехходовой, двухпозиционный клапан 1, пневматический выпускной клапан 2 с ограничительным клапаном и три обратных клапана. Выпускной клапан в обесточенном состоянии закрыт. Пневматический выпускной клапан ограничивает давление в системе и поддерживает остаточное давление в ней.
Перегрев компрессора предотвращается выключением электродвигателя при превышении предельного значения температуры.
При ходе поршня к ВМТ воздух всасывается в картер через глушитель шума всасывания с фильтром и впускной штуцер 10. Воздух, находящийся в цилиндре над поршнем, сжимается и перепускается через обратный клапан 5 в осушитель. Сжатый и осушенный воздух направляется через обратный клапан 12 и нагнетательный штуцер 14 к распределительным клапанам и к ресиверу.
При движении поршня к НМТ поступивший в картер воздух перепускается через мембранный клапан 7 в цилиндр компрессора.
Подкачка подвески и повышение уровня кузова
Для подкачки подвески и подъема кузова блок управления одновременно переключает реле компрессора и клапанов пневматических упругих элементов. Воздух при этом через выпускной штуцер 13 поступает через клапана упругих элементов в воздушную полость упругого элемента.
Выпуск воздуха из подвески и снижение уровня кузова
Для выпуска воздуха из подвески производится открытие клапанов пневматических элементов и выпускного клапана 1, в обмотку которого подается напряжение. При этом воздух из упругих элементов поступает к пневматическому выпускному клапану 2 и направляется далее через осушитель, ограничительный клапан 15 и глушитель шума всасывания с фильтром в нишу багажника автомобиля, предназначенную для размещения запасного колеса.
Осушитель воздуха
Поступающий в систему сжатый воздух должен быть обезвожен, так как конденсат вызывает коррозию и образование ледяных пробок. Обезвоживание воздуха производится в осушителе. Осушитель работает в режиме регенерации, то есть воздух, нагнетаемый в систему регулирования уровня кузова, осушается в результате пропуска его через гранулированный силикат. Этот гранулят способен поглощать влагу в количествах, превышающих в зависимости от температуры 20% собственной массы. Если в процессе эксплуатации (например, при снижении уровня кузова) производится выпуск сухого воздуха из системы, он пропускается через гранулят и отбирает накопленную в нем влагу. Благодаря такому режиму регенерации осушитель не нуждается в обслуживании и не подлежит также замене в процессе эксплуатации.
Ресивер
Благодаря отбору сжатого воздуха из ресивера обеспечивается быстрый подъем кузова автомобиля при минимальном уровне шума. Ресивер заполняется только при движении автомобиля, благодаря чему шум компрессора практически не прослушивается. При достаточно большом давлении в ресивере повышение уровня кузова может осуществляться без компрессора. Под достаточным давлением подразумевается такой его уровень, при котором обеспечивается перепад давления между ресивером и пневматическими упругими элементами не менее 3 кгс/см2. При скоростях автомобиля до 35 км/ч подача воздуха в систему производится в первую очередь из ресивера (пока давление в нем достаточно велико). При скоростях более 35 км/ч воздух в систему подается непосредственно компрессором. Такая система подачи сжатого воздуха способствует снижению шума при эксплуатации и защищает аккумуляторную батарею от чрезмерного разряда.
Датчики уровня кузова
Такие датчики относятся к измерителям угла поворота. Кинематика соединительных штанг позволяет преобразовать изменения уровня кузова в угловые перемещения рычагов датчиков. В датчике угловых перемещений данного типа используется закон электромагнитной индукции. На выводах датчика создается сигнал (широтно-импульсной модуляции), который пропорционален углу поворота его оси.
Важнейшими деталями датчика являются статор и ротор. Статор образован многослойной платой, содержащей катушку возбуждения, три приемные катушки, а также блок управления и обработки результатов измерений. Три приемные катушки смещены относительно друг друга, образуя звезду. Катушка возбуждения перекрывает приемные катушки с обратной стороны платы.
Ротор жестко соединен с рычагом датчика. На роторе выполнена замкнутая токопроводящая петля. Форма этой петли соответствует форме трех приемных катушек.
Через катушку возбуждения проходит переменный ток, который создает вокруг нее переменное электромагнитное поле (поле 1). Это поле пронизывает токопроводящую петлю ротора. Индуцируемый в токопроводящей петле ротора ток также создает вокруг нее переменное электромагнитное поле (поле 2).
Рис. Принцип действия датчика уровня кузова.
Переменные поля, создаваемые катушкой возбуждения и ротором, действуют на три приемные катушки и индуцируют в них переменные напряжения, величина которых зависит от взаимного положения катушек и ротора. Индуцируемый в роторе ток не зависит от его углового положения, а индуцируемое в приемных катушках напряжение изменяется в зависимости от их положения относительно ротора. Таким образом, это напряжение определяется угловым положением ротора. Так как ротор при повороте в разной степени перекрывает приемные катушки, амплитуды индуцируемых в них напряжений зависят от угла его поворота.
Рис. Амплитуды напряжений на выводах приемных катушек в зависимости от положения ротора
В электронном блоке производится выпрямление и усиление индуцируемых в приемных катушках напряжений, величины которых затем сопоставляются друг с другом. Результаты этого сопоставления преобразуются в выходные сигналы чувствительного элемента датчика уровня кузова, которые направляются для дальнейшей обработки блоками управления подвески.
Датчики ускорения. Датчики ускорений кузова и колес имеют аналогичную конструкцию. Принцип действия датчиков ускорений основан на измерении электрических емкостей. Между пластинами конденсатора колеблется упруго подвешенная масса m, выполняющая функции центрального электрода. Емкости конденсаторов C1 и C2 изменяются синхронно с колебаниями массы. Расстояние d1 между пластинами одного конденсатора увеличивается настолько, насколько уменьшается расстояние d2 другого конденсатора. В результате изменяются емкости обеих конденсаторов. После электронной обработки данных измерений на блок управления уровнем кузова подается напряжение в качестве аналогового сигнала.
Рис. Емкостной датчик для измерения ускорений
Кроме амортизаторов с гидравлическим демпфированием на легковых автомобилях применяются амортизаторы PDC (Pneumatic Damping Conrol) с пневматическим демпфированием.
Рис. Амортизатор с пневматическим регулированием демпфирования: 1 – донный клапанный узел; 2 – узел PDC; 3 – дроссель в воздушном канале; 4 – первая рабочая камера; 5 – упорный буфер; 6 – газ; 7 – отверстия; 8 – поршневой клапанный узел с уплотнительной манжетой; 9 – вторая рабочая камера; 10 – поршень PDC; 11 – клапан PDC; а – клапан открыт; б – общий вид; в – клапан закрыт
Усилие демпфирования может варьироваться в зависимости от давления в пневмобаллоне при помощи отдельного узла PDC 2, встраиваемого в амортизатор. Узел соединен шлангом с пневматическим упругим элементом. Пропорциональное нагрузке давление в пневматическом упругом элементе передвигает клапан 11, соединенный с поршнем 10, изменяя гидравлическое сопротивление между первой и второй рабочими камерами, т. е. усилие демпфирования при отбое и сжатии. Чтобы сгладить скачки давления в пневматическом упругом элементе (при сжатии и отбое), во входной воздушный канал клапана PDC встроен дроссель 3.
Первая рабочая камера с помощью отверстий 7 соединена с узлом PDC. При низком давлении в пневматическом упругом элементе (условия нагрузки – снаряженный или имеющий небольшую частичную нагрузку автомобиль) клапан PDC имеет малое гидравлическое сопротивление, благодаря чему часть масла направляется в обход соответствующего демпфирующего клапана, уменьшая усилие демпфирования.
При ходе и низком давлении в пневматическом упругом элементе отбоя поршень идет вверх, часть масла дросселируется через клапана поршня амортизатора, другая часть перетекает через отверстия в первой рабочей камере к клапану PDC. Если управляющее давление (давление в пневматическом упругом элементе) и, следовательно, гидравлическое сопротивление клапана PDC малы, то усилие демпфирования уменьшается.
При ходе отбоя и высоком давлении в пневматическом упругом элементе управляющее давление закрывает клапан 11 полностью или частично, следовательно, гидравлическое сопротивление повышается. Большая часть масла (в зависимости от величины управляющего давления) должна дросселироваться через клапана поршня амортизатора, частично перетекая или совсем не перетекая через отверстия в первой рабочей камере к клапану PDC, усилие демпфирования при этом повышается.
Аналогично амортизатор с пневматическим регулированием демпфирования работает и при ходе сжатия.
Главным составляющим подвески является упругий элемент, который состоит из цилиндра, в котором перемещается поршень 2, с длинной направляющей цилиндрической поверхностью. В верхней части цилиндра установлен сферический баллон 4, разделенный эластичной диафрагмой (мембраной) на две полости: верхняя заполнена сжатым азотом, нижняя жидкостью. Между цилиндром и баллоном расположен амортизационный клапан, через который пропускается жидкость при ходе отбоя и сжатия (на схеме не показан).
Функцию упругой пружины в пневмогидравлическом упругом элементе выполняет газ (азот), полость расположения которого от полости, занятой жидкостью, разделяется эластичной мембраной. Увеличивая или уменьшая объем жидкости, можно изменять положение поршня, связанного с направляющим рычагом подвески 1, и тем самым изменять дорожный просвет между кузовом и дорогой. Изменяя давление и объем газа в определенной пропорции, (подвеска Hydractive) можно при одной и той же нагрузке на колесе изменять упругую характеристику подвески, делая ее либо «мягкой» (комфортный режим), либо «жесткой» (спортивный режим). Гашение колебаний в таком упругом элементе осуществляется амортизационным клапаном 8, при перетекании жидкости под воздействием поршня из полости цилиндра в подмембранную полость баллона.
Увеличение объема газа в пневмогидравлическом упругом элементе (для создания «мягкой» характеристики) достигается с помощью дополнительных сфер 7, включенных раздельно в систему передней и задней подвесок. Работа подвески в «комфортном» режиме обеспечивает при движении автомобиля высокий комфорт и удобство управления; работа в «спортивном» режиме улучшает устойчивость автомобиля на поворотах и при торможении, что повышает безопасность. В «комфортном» режиме электромагнитный клапан 3 и золотник 10 открывают соединительную магистраль между основными сферами 6, а также подключают к ним дополнительную сферу 7, что увеличивает плавность хода. В «спортивном» режиме золотник отключает третью сферу и размыкает соединительную магистраль, что увеличивает жесткость подвески примерно в три раза выше.
Для перевода подвески в «комфортный» или «спортивный» режим служит электромагнитный клапан 3 (регулятор жесткости), отключающий или подключающий дополнительный баллон к гидравлическому приводу системы подвески.
Дальнейшим совершенствованием подвески Hydractive явилось применение электронной системы управления по специальной программе. Она обеспечивает изменение характеристики подвески в зависимости от дорожной ситуации для лучшей управляемости и от изменения состояния дороги. Аналогично рассмотренной выше системе, программа позволяет водителю выбрать «жесткий» или «автоматический» режим. В «жестком» режиме компьютер регулирует уровень демпфирования для обеспечения спортивной жесткой характеристики подвески. В «автоматическом» режиме регулируется уровень демпфирования для обеспечения комфортного движения в нормальных условиях. При торможении, повороте или резком ускорении система автоматически переключается на «жесткий» режим. При высоких скоростях движения система переключается на «жесткий» режим по сигналу контрольного модуля двигателя в зависимости от угла поворота дроссельной заслонки и давления во впускном коллекторе.
Управление электромагнитным клапаном, переключающим режимы работы подвески, осуществляется микропроцессором, который получает информацию от нескольких датчиков:
угла поворота рулевого колеса и его угловой скорости вращения
положения педали акселератора
давления в тормозной системе
крена кузова
скорости автомобиля
Данные памяти компьютера сравниваются с получаемой от датчиков информацией и микропроцессор выбирает соответствующий режим подвески. Включение соответствующего режима подвески происходит менее чем через 0,05 с.
Информацию о положении кузова в микропроцессор передает специальный датчик.
Рис. Датчик высоты положения кузова: 1 – контактный разъем; 2 – рычаг положения кузова
Датчики высоты кузова относятся к аналоговому типу. Они посылают информацию о средней высоте кузова и колебаниях подвески на электронные блоки управления подвеской и фар. Изменение высоты кузова вызывает изменение угла датчика высоты кузова, что влияет на выходное напряжение датчика.
Отрицательное значение угла датчика высоты кузова соответствует сжатию подвески. Положительное значение угла датчика высоты кузова соответствует отдаче подвески.
Аналогичные системы применяются для автомобилей Mersedes-Benz.
Блок управления получает входные сигналы от следующих устройств:
датчика ускорений кузова
датчика ускорений колеса
датчика загрузки, давления в задних стойках
датчика угла поворота колеса
переключателя «комфорт/спорт»
блока управления ABS о скорости движения автомобиля
На основании этих данных вычисляются качество дорожного покрытия, поперечное ускорение, загрузка, предпочтение водителя и производится управление клапанами регулировки жесткости.
Если оба клапана 2 и 3 закрыты, сечение канала по которому перетекает жидкость минимально, и амортизатор имеет максимальную жесткость. Открывая клапаны по отдельности или одновременно, можно увеличить сечение канала и, соответственно уменьшить жесткость амортизаторов. При отключении системы питание с контактов снимается, что устанавливает режим максимальной жесткости амортизаторов. Управление жесткостью амортизаторов производится раздельно для передней и задней оси.
Простой системой, позволяющей изменять дорожный просвет является система регулируемых гидравлических проставок (гидроопор) «Квик-Лифт», разработанная фирмой H&R. Под пружины подвески монтируют гидроопоры, масло в которые закачивает входящий в комплект электронасос. Для включения гидроопор имеется специальный переключатель, при включении которого через 2 сек дорожный просвет увеличивается на 30 мм. После проезда препятствия можно снова вернуться в нормальное состояние.
Такие проставки могут устанавливаться на большинство находящихся в эксплуатации легковых автомобилях специалистами сервисных центров.
Рис. Изменение положения кузова автомобиля с гидропроставкой: а – при включенной гидропроставке; б – исходное положение
Гидравлическая подвеска ⭐ – вид подвески, обеспечивающий регулирование уровня кузова относительно дороги за счет применения гидравлических упругих элементов.
В гидроподвеске вместо амортизаторов используются гидростойки или гидроподъемники с очень большим рабочим ходом. На верхний конец каждой стойки навинчиваются особые шары или гидросферы, которые выполняют роль пружин, их ещё называют «були». Устроены они предельно просто: полость внутри сферы разделена на две части упругой мембраной, с одной стороны сфера заполненна азотом (давление от 35 до 60 атмосфер), а с другой стороны мембрану подпирает специальное масло (LHM или LHM+ для DS, CX, GS, BX, XM, Xantia, для Citroen C5, C6 применяется LDS — оранжевого цвета) едко-зеленого цвета.
Как известно при нагрузке дорожный просвет у автомобиля уменьшается. Чтобы избежать этого могут применяться системы саморегулирования задней подвески. На рисунке приведена компоновка гидравлической подвески с автоматической регулировкой постоянства уровня кузова легкового автомобиля.
Рис. Компоновка подвески с автоматической регулировкой постоянства уровня кузова легкового автомобиля: 1 – двухступенчатый насос для обеспечения работы гидроусилителя рулевого управления и регулировки постоянства уровня кузова; 2 – блок управления; 3 – накопители (гидравлические аккумуляторы); 4 – регулятор тормозного усилия; 5 – бачок для рабочей жидкости
В автомобилях с саморегулированием задней подвески предусмотрен специальный бачок 5 с рабочей жидкостью, которая может подаваться в задние амортизаторы. Эта жидкость выполняет вспомогательную функцию для облегчения действия цилиндрических пружин при перевозке тяжелых грузов. Жидкость подается в накопители 3 гидравлическим насосом 1. Система управляется специальным блоком 2, установленным на днище автомобиля. Блок связан с задним стабилизатором поперечной устойчивости и по положению стабилизатора определяет загрузку автомобиля.
Принцип работы системы показан на рисунке.
Рис. Принцип работы системы с гидравлической подвеской: 1 – насос; 2 – поршень приводного механизма; 3 – клапан; 4 – перепускной клапан; 5 – жиклер; 6 – правый кулачок; 7,10 – шарик; 8 – предохранительный клапан; 9 – левый кулачок; 11 – бачок; 12 – пружина; 13 – тяга; a – нейтральное положение кузова; b – верхнее положение кузова; c – нижнее положение кузова
При работающем двигателе, гидравлический насос подает жидкость к блоку управления. В зависимости от загрузки салона автомобиля вал, на котором установлены два кулачка 6 и 9, может поворачиваться. Поворот вала зависит от положения тяги 13, связанной в свою очередь с задним стабилизатором кузова.
Если автомобиль не нагружен, кулачок 9 поворачиваясь, воздействует на шарик 10 и тот открывает клапан 3. Жидкость при этом возвращается из амортизатора в бачок. В этом положении задняя подвеска поддерживается только цилиндрическими пружинами.
Как только автомобиль загружается выше определенной нормы, в работу вступает кулачок 6, который толкает поршень приводного механизма 2 в верхнее положение с помощью шарика и перекрывает обратную магистраль. Жидкость из накопителей и насоса подается через перепускной клапан 4 в резервуары амортизаторов. Давление в резервуарах амортизатора заставляет амортизаторы слегка удлиниться, приподнимая заднюю часть автомобиля. Как только задняя часть автомобиля поднимется на нужную высоту, предохранительный клапан 8 вернет жидкость в накопитель или бачок.
При постоянном положении кузова в среднем положении амортизаторы, соединенные с клапаном 3, изолированы от жидкостной системы и происходит перекачка жидкости из бачка (накопителей) в насос и снова в бачок.
Таким образом, блок управления уровнем поддерживает высоту задней части автомобиля на одном уровне, независимо от груза.
Накопители оборудованы наполненной газом камерой, которая отделена от жидкости резиновой диафрагмой. Эта камера позволяет амортизаторам функционировать правильно, даже при наполненных накопителях. При толчке амортизатор сжимается и жидкость выталкивается в накопитель, деформируя его диафрагму. Когда амортизатор удлиняется, жидкость под давлением диафрагмы возвращается из накопителя в амортизатор.
Высота дорожного просвета автомобиля изменяется путем переключения установленного в салоне автомобиля рычага управления. Рычаг посредством исполнительных штоков соединен с корректорами высоты подвески. На моделях ранних лет выпуска при выключении двигателя автомобиль опускается в нижнее положение. Более поздние модели оборудованы односторонним клапаном, изолирующим подвеску от главной гидравлической системы, что позволяет избежать подобного опускания кузова после останова двигателя.
Видео: Общее устройство подвески автомобиля. 3D анимация. Проверка подвески автомобиля, диагностика своими руками. Чем отличается подвеска Макферсон от многорычажной, и какие автомобильные подвески бывают. Балка или многорычажная подвеска — что лучше? Что такое пневмоподвеска и как она устроена. Торсионная подвеска автомобиля
Что такое подвеска?
Подвеска — это совокупность устройств, обеспечивающих упругую связь между подрессоренной и неподрессоренными массами Подвеска уменьшает динамические нагрузки, действующие на подрессоренную массу. Она состоит из трех устройств:
упругого
направляющего
демпфирующего
Упругим устройством 5 на подрессоренную массу передаются вертикальные силы, действующие со стороны дороги, уменьшаются динамические нагрузки и улучшается плавность хода.
Направляющее устройство 7 – механизм, воспринимающий действующие на колесо продольные и боковые силы и их моменты. Кинематика направляющего устройства определяет характер перемещения колеса относительно несущей системы.
Демпфирующее устройство (амортизатор) 6 предназначено для гашения колебаний кузова и колес путем преобразования энергии колебаний в тепловую и рассеивания ее в окружающую среду.
Конструкция подвески должна обеспечивать требуемую плавность хода иметь кинематические характеристики, отвечающие требованиям устойчивости и управляемости автомобиля.
Зависимая подвеска
Зависимая подвеска характеризуется зависимостью перемещения одного колеса моста от перемещения другого колеса.
Рис. Схема зависимой подвески колес
Передача сил и моментов от колес на кузов при такой подвеске может осуществляться непосредственно металлическими упругими элементами – рессорами, пружинами или с помощью штанг – штанговая подвеска.
Металлические упругие элементы имеют линейную упругую характеристику и изготавливаются из специальных сталей, обладающих высокой прочностью при больших деформациях. К таким упругим элементам относятся листовые рессоры, торсионы и пружины.
Листовые рессоры на современных легковых автомобилях практически не применяются, за исключением некоторых моделей автомобилей многоцелевого назначения. Можно отметить модели легковых автомобилей, выпускавшиеся ранее с листовыми рессорами в подвеске, которые продолжают эксплуатироваться и в настоящее время. Продольные листовые рессоры устанавливались в основном в зависимой подвеске колес и выполняли функцию упругого и направляющего устройства.
На легковых автомобилях и грузовых или микроавтобусах применяются рессоры без подрессорников, на грузовых автомобилях – с подрессорниками.
Рис. Рессоры:
а) – без подрессорника; б) – с подрессорником
Пружины как упругие элементы применяются в подвеске многих легковых автомобилей. В передней и задней подвесках, выпускаемых различными фирмами большинства легковых автомобилей применяются винтовые цилиндрические пружины с постоянными сечением прутка и шагом навивки. Такая пружина имеет линейную упругую характеристику, а необходимые характеристики обеспечиваются дополнительными упругими элементами из полиуретанового эластомера и резиновыми буферами отбоя.
На легковых автомобилях Российского производства в подвесках применяют цилиндрические винтовые пружины с постоянными сечением прутка и шагом в сочетании с резиновыми отбойными буферами. На автомобилях производителей других стран, например, БМВ 3-й серии в задней подвеске устанавливают бочкообразную (фасонную) пружину с прогрессивной характеристикой, достигаемой за счет формы пружины и применения прутка переменного сечения.
На ряде автомобилей для обеспечения прогрессивной характеристики применяется комбинация цилиндрических и фасонных пружин с переменной толщиной прутка. Фасонные пружины имеют прогрессивную упругую характеристику и называются «миниблоками» за небольшие размеры по высоте. Такие фасонные пружины применяют, например в задней подвеске автомобилей «Фольксваген», «Ауди», «Опель» и др. Фасонные пружины имеют различные диаметры в средней части пружины и по краям, а пружины «миниблок» имеют и различный шаг навивки.
Торсионы, как правило, круглого сечения применяются на автомобилях в качестве упругого элемента и стабилизатора.
Рис. Торсион
Упругий крутящий момент передается торсионом через шлицевые или четырехгранные головки, расположенные на его концах. Торсионы на автомобиле могут быть установлены в продольном или поперечном направлении. К недостаткам торсионов следует отнести их большую длину, необходимую для создания требуемых жесткости и рабочего хода подвески, а также высокую соосность шлицов на концах торсиона. Однако следует отметить, что торсионы имеют небольшую массу и хорошую компактность, что позволяет успешно применять их на легковых автомобилях среднего и высокого классов.
Независимая подвеска
Независимая подвеска обеспечивает независимость перемещения одного колеса моста от перемещения другого колеса. По типу направляющего устройства независимые подвески делятся на рычажные, и подвески Макферсона.
Рис. Схема независимой рычажной подвески колес
Рис. Схема независимой подвески Макферсона
Рычажная подвеска – подвеска, направляющее устройство которой представляет собой рычажный механизм. В зависимости от количества рычагов могут быть двухрычажные и однорычажные подвески, а в зависимости от плоскости качания рычагов – поперечно-рычажные, диагонально-рычажные и продольно-рычажные.
Подвеска Макферсона, основным элементом которой служит амортизаторная стойка, является развитием подвески на двойных поперечных рычагах, но имеет только снизу один или два поперечных рычага.
Снизу амортизаторная стойка крепится к поворотному кулаку, а сверху – к кузову автомобиля.
При повороте управляемых колес амортизаторная стойка поворачивается вместе с закрепленной на ней пружиной, что требует применения в верхней опоре подшипника качения или скольжения с низким значением трения. Винтовые пружины, расположенные вокруг амортизаторной стойки, обычно устанавливаются под некоторым углом к ее оси. Такой способ установки обеспечивает снижение величины «пороговой жесткости» подвески, когда сначала при небольших вертикальных усилиях со стороны колеса не происходит сжатия пружины а затем она сжимается довольно резко. Это позволяет устранить неприятные ощущения при движении по относительно ровным дорогам. Подвеска Макферсона обеспечивает незначительное, по сравнению с подвеской на двойных рычагах, изменение развала колес при их вертикальном перемещении.
К основным преимуществам подвески Макферсона следует отнести то, что она занимает небольшой объем и создает удобства при поперечном размещении силового агрегата, что обусловило ее широкое применение.
Рычаги направляющего устройства подвески соединяются с колесом и кузовом с помощью шаровых шарниров и втулок. Шарниры могут быть направляющими и несущими. Например, в независимой подвеске на поперечных рычагах на нижний рычаг опирается упругий элемент. Шаровой шарнир такого рычага воспринимает силы, действующие в различных направлениях, следовательно, шарнир должен быть несущим. Шарнир на верхних рычагах не воспринимает вертикальные силы, а передает в основном поперечные. В этом случае применяется направляющий шарнир. На рисунке показаны несущие шаровые шарниры и направляющий шарнир, применяющиеся на автомобилях.
Рис. Несущие и направляющие шаровые шарниры направляющего устройства подвески:
а – прямой несущий шарнир с цельным пластмассовым вкладышем; б – несущий шарнир с дополнительной шумоизоляцией; в – направляющий шарнир с поджатием нижней половины вкладыша к сферической головке
Следует отметить, что аналогичные шарниры применяются и на рулевых тягах. Шарниры имеют цилиндрический или конусный направляющий хвостовик, шаровая головка охватывается пластмассовым (из ацетильной смолы) вкладышем, защитный чехол заполняется специальной смазкой. Такие шарниры (фирмы-изготовители «Эренрайх», «Лемфёрдер Метальварен») обладают хорошей герметичностью от попадания грязи и практически не требуют обслуживания. Обращает на себя внимание несущий шарнир, имеющий дополнительную шумоизоляцию в виде упругих резиновых вкладышей, используемый фирмой «Даймлер-Бенц» для изоляции шумов от качения радиальных шин.
Опорные узлы направляющего устройства подвески должны иметь небольшое трение, быть достаточно жесткими и обладать шумопоглощающими свойствами. Для обеспечения этих требований в конструкцию опорных элементов вводятся резиновые или пластмассовые вкладыши. В качестве материалов вкладышей применяют такие, которые не требуют обслуживания в процессе эксплуатации, например, полиуретан, полиамид, тефлон и др. Использование резиновых вкладышей во втулках обеспечивает хорошую шумоизоляцию, эластичность при кручении и упругое смещение под нагрузкой. Наибольшее распространение в опорных элементах получили сайлент-блоки, состоящие из резиновой цилиндрической втулки, запрессованной с большим обжатием между наружной и внутренней металлическими втулками. Эти втулки допускают углы закручивания ±15° и перекос до 8°. Втулка применяется на автомобиле БМВ, изготовлена методом вулканизации резины между двумя стальными втулками, обладает хорошими шумопоглощающими свойствами и достаточной жесткостью. Втулка нашла широкое применение в поперечных тягах и амортизаторах.
Рис. Опорные втулки элементов подвески:
а – сайлент-блок; б – сайлент-блок качающейся опоры автомобиля БМВ; в – шарнирная втулка, применяемая в тягах Панара и амортизаторах
На поперечных рычагах автомобилей «Даймлер-Бенц» и «Фольксваген» устанавливают так называемые скользящие опоры, в которых промежуточная втулка может скользить по внутренней, обеспечивая малую жесткость при кручении (деформация не превышает 0,5 мм при боковой силе 5 кН). Опору смазывают, а подвижную часть герметизируют торцевыми уплотнениями.
При повороте автомобиля его кузов наклоняется на определенный угол, называемый углом крена. В подвесках легковых автомобилей автобусов и некоторых грузовых автомобилей применяется дополнительное устройство – стабилизатор поперечной устойчивости. Он способствует уменьшению бокового крена и поперечных угловых колебаний кузова автомобиля и перераспределяет вес по колесам автомобиля.
Стабилизатор поперечной устойчивости автомобиля представляет собой упругую штангу из пружинной стали в виде растянутой буквы П, прямые, дугообразные и т.п. Штанга закреплена шарнирно в средней части на кузове или подрамнике, а своими концами соединяется с подвижными элементами подвески. Упругие свойства стабилизатора проявляются при его закручивании, как у торсиона. Если при движении автомобиля левое и правое колесо перемещаются одновременно и на одинаковое расстояние, стабилизатор практически не оказывает влияния на жесткость основных упругих элементов подвески. При повороте автомобиля стабилизатор закручивается и изменяет жесткость, уменьшая тем самым величину крена автомобиля. Большинство современных легковых автомобилей оборудуются как минимум передним стабилизатором поперечной устойчивости.
Стабилизатор может устанавливаться как в передней, так и в задней части автомобиля на резиновых втулках для обеспечения упругой деформации в опорах. Как правило, стабилизаторы изготавливают из пружинной стали.
Рис. Стабилизатор поперечной устойчивости
Зависимая подвеска на легковых автомобилях устанавливается на задних колесах. Отличительной особенностью конструкции применяющихся зависимых подвесок является наличие упругих элементов, передающих вертикальные нагрузки и не имеющих трения, жестких тяг и рычагов, воспринимающих поперечные (боковые) нагрузки и обеспечивающих колесу и кузову определенную кинематику.
Характерной конструкцией задней зависимой подвески заднеприводного автомобиля (классическая компоновка) является подвеска автомобиля ВАЗ.
В подвеску установлены под углом к вертикальной оси автомобиля два амортизатора. Такое расположение амортизаторов обеспечивает дополнительно к гашению вертикальных колебаний повышение поперечной устойчивости кузова. Аналогичная установка амортизаторов принята в подвесках автомобилей «Фольксваген», «Опель», «Форд», «Фиат» и др.
На автомобилях «Ауди», «Мицубиси», «Тойота» и др. применяется подвеска задних ведомых колес с двумя продольными рычагами работающими на изгиб. Через широко разнесенные рычаги, жестко связанные с поперечной балкой передаются тяговый и тормозной моменты, а за счет восприятия изгибающего момента рычагами и скручивающих нагрузок поперечной балкой уменьшается продольный и поперечный крены кузова.
Рис. Задняя подвеска переднеприводного автомобиля «Мицубиси Галант» со скручиваемой поперечной балкой:
1 – продольный рычаг; 2 – несущая балка подвески; 3 – резиновая втулка; 4 – стабилизатор; 5 – поперечная тяга; 6 – амортизатор с пружиной; Б – опора стабилизатора; В – резиновая втулка крепления рычага к кузову
Широкое распространение на легковых автомобилях получила конструкция подвески (в ряде случаев ее называют полузависимой) со связанными продольными рычагами. Простейшим вариантом такой конструкции может служить подвеска задних колес переднеприводных автомобилей ВАЗ ЗАЗ-1102, «Рено», «Фольксваген Поло», «Сирокко», «Пассат», «Гольф», «Аскона» и др.
Рис. Задняя подвеска переднеприводных автомобилей ВАЗ
Балка задней подвески состоит из двух продольных рычагов 15 и соединителя 14, которые сварены между собой через усилители. В задней части к рычагам подвески приварены кронштейны 16 с проушинами для крепления амортизаторов, а также фланцы 2, к которым крепятся болтами оси задних колес. Спереди рычаги подвески имеют приварные втулки 3, в которые запрессованы резинометаллические шарниры 4. Через шарнир проходит болт, соединяющий рычаг подвески со штампованно-сварным кронштейном 5, который крепится к лонжерону кузова приварными болтами Пружина 12 подвески опирается одним концом на чашку амортизатора 1, а другим через изолирующую прокладку 13 в опору, приваренную к внутренней арке (брызговику) кузова. На шток амортизатора задней подвески устанавливается буфер 7 хода сжатия закрываемый крышкой 8 с кожухом 6, и детали крепления амортизатора — распорная втулка 11, подушки 10 и опорная шайба 9.
Такая подвеска в переднеприводных автомобилях обеспечивает легкость компоновки всех элементов подвески, небольшое количество деталей в подвеске, отсутствие направляющих рычагов и штанг, оптимальное передаточное отношение от кузова к упругому устройству подвески исключение стабилизатора, высокую стабилизацию схода и колеи при разных ходах подвески, благоприятное расположение центров крена, уменьшающих возможность перераспределения массы кузова при торможении.
Подвеска с виртуальной осью поворота колеса
Такая подвеска применяется на легковых автомобилях Фольксваген Фаэтон. При подвеске переднего колеса на четырех рычагах ось его поворота проходит не через верхний и нижний шарниры поворотной стойки, как это имеет место у известных конструкций подвески, а через точки пересечения продленных осей верхних и нижних рычагов.
Рис. Подвеска с виртуальной осью поворота колеса:
1…4 — направления продольных осей рычагов; R — центр колеса; A — центр опорной поверхности колеса; n — вынос оси поворота по отношению к центру опорной поверхности; nv — вынос оси поворота по отношению к центру колеса; p — плечо обката; a — плечо действия возмущающих сил; AS — точка пересечения оси поворота колеса с плоскостью дороги
Таким образом ось поворота колеса расположена как бы в свободном пространстве и меняет свое местоположение при повороте колеса. Поэтому такую ось поворота колеса называют виртуальной. Данная конструкция позволяет существенно приблизить ось поворота колеса к его средней плоскости. Это положительно сказывается на величинах плеча обката и плеча действия возмущающих сил, благодаря чему улучшаются характеристики управляемости и устойчивости автомобиля.
Список видов подвесок легковых автомобилей
В настоящей статье рассмотрены лишь основные виды подвесок автомобилей, в то время как их видов и подвидов на самом деле существует намного больше и, к тому же инженерами постоянно разрабатываются новые модели и дорабатываются старые. Для удобства приведем список наиболее распространенных. В последующем каждая из подвесок будет рассмотрена подробней.
Зависимые подвески
На поперечной рессоре
На продольных рессорах
С направляющими рычагами
С упорной трубой или дышлом
«Де Дион»
Торсионно-рычажная (со связанными или с сопряжёнными рычагами)
Амортизаторы наряду с другими системами и агрегатами оказывают существенное влияние на безопасность движения. Известно, что отсутствие надежного контакта колеса с опорной поверхностью, особенно при высоких скоростях движения автомобиля, приводит к снижению безопасной скорости движения при повороте на 10.15 %, а также к увеличению тормозного пути на 5.10 %. При неисправных амортизаторах колебания колеса могут исказить информацию, поступающую в блок управления АБС; при этом возможно ошибочное растормаживание колеса.
Неисправные амортизаторы приводят к нестабильному и неравномерному освещению дороги, ослеплению водителей встречных автомобилей вследствие повышенного колебания кузова или шасси. Переднеприводной автомобиль с амортизаторами, изношенными на 50 %, при движении с постоянной скоростью по дороге, покрытой слоем воды толщиной 6 мм, может начать аква- планирование при скорости, на 10 % меньшей скорости такого же автомобиля, но с исправными амортизаторами.
В настоящее время амортизаторы по влиянию на безопасность движения ставят в один ряд с такими элементами и системами активной безопасности автомобиля, как шины, тормозные системы и рулевое управление. Причем при техническом обслуживании автомобиля должное внимание состоянию амортизаторов, как правило, не уделяется.
Износ и старение деталей амортизаторов происходят медленно, вследствие чего постепенно снижается и эффективность. Водитель не чувствует резких изменений в поведении автомобиля, привыкая к постепенному ухудшению его характеристик. В связи с этим в процессе эксплуатации автомобиля весьма актуальны периодическое диагностирование амортизаторов и оценка эффективности их работы.
Стенд для проверки амортизаторов
Для оценки состояния подвески (в первую очередь, амортизаторов) автомобиля в процессе эксплуатации применяются стенды, имитирующие движение автомобиля по неровностям. Их действие основано на моделировании резонанса в подвеске автомобиля, который возникает в результате воздействия внешней силы от неровностей опорной поверхности. При этом частота колебаний подвески оказывается близкой к частоте свободных колебаний неподрессоренной массы. При резонансе резко возрастают амплитуды и ускорения вынужденных колебаний масс, а их уровень зависит от качества (технического состояния) амортизаторов.
Оценка состояния подвески автомобиля производится по методу EUSAMA (Европейская комиссия по стандартизации вибрационных методов испытаний в машиностроении) в зоне высокочастотного резонанса посредством измерения изменяющейся при колебаниях платформы силы воздействия колеса на измерительную площадку.
Стенд для проверки амортизаторов представляет собой две площадки, на которые устанавливается автомобиль последовательно передними и задними колесами. Каждая из площадок снабжена встроенными датчиками для измерения как статической, так и динамической нагрузки на колеса автомобиля. Колебания площадок производятся с помощью эксцентрика 5, приводимого в движение электродвигателем 3.
При подключении стенда платформы начинают совершать вертикальные колебания с различными амплитудой (6,0, 7,5 или 9,0 мм) и частотой возбуждения, изменяющейся от максимальной (16 или 23 Гц), превосходящей резонансную частоту колебаний неподрессоренной массы, до нулевой (при отключении стенда). За счет пружин малой жесткости в приводе стенда обеспечивается постоянный контакт колес автомобиля с платформами.
При достижении максимальной частоты источник питания электродвигателей отключается и система начинает совершать свободные затухающие колебания. В случае приближения частоты собственных колебаний неподрессоренной массы к области высокочастотного резонанса происходит увеличение амплитуды колебаний; чем оно значительнее, тем хуже работает амортизатор.
Результаты колебательного процесса при работе стенда автоматически обрабатываются и заносятся в память компьютера, а по окончании измерений отдельно для подвески каждого колеса автомобиля распечатываются результаты проверки.
Стенды для проверки амортизаторов, например фирмы МАХА (серия FVT), могут быть предназначены для проездного поста. При этом заезжать на площадку надо строго вдоль продольной оси. Стенды другой серии (SA) этой же фирмы благодаря параллелограммному рычагу под площадкой дают этой площадке возможность перемещаться вверх и вниз поступательно. Благодаря этому автомобиль может заезжать на площадку под любым углом, что позволяет оптимально использовать площади, на которых производится проверка подвесок.
Шасси транспортного средства — это совокупность его узлов и систем, за исключением кузова, двигателя и кабины.
Шасси транспортного средства не считается элементом, непосредственно влияющим на безопасность дорожного движения, поэтому нормативные требования к его конструктивным элементам отсутствуют. Вместе с тем в процессе эксплуатации транспортных средств могут возникать неисправности указанной системы, которые оказывают значительное влияние на создание предпосылок совершения дорожно-транспортных происшествий, а также усугубляют тяжесть их последствий.
Это связано в первую очередь с тем, что от технического состояния элементов шасси зависит управляемость и устойчивость транспортного средства в тех пределах, которые установлены предприятием-изготовителем при проектировании и изготовлении. При этом под управляемостью понимается качество транспортного средства, облегчающее движение по заданной водителем траектории, а под устойчивостью — качество, обеспечивающее движение по заданной водителем траектории при наличии внешних воздействий. Реализация этих качеств зависит в основном от упругих и гасящих элементов подвесок.
Кроме того, техническое состояние элементов шасси оказывает значительное влияние на вероятность появления отказов, приводящих к движению транспортного средства в неконтролируемом либо частично контролируемом водителем направлении. Это касается в первую очередь направляющих элементов подвески автомобиля, а также шарниров поворотных цапф (шкворней и шаровых опор).
И, наконец, техническое состояние элементов шасси может влиять на безопасность других участников дорожного движения в случае отсоединения какого-либо элемента от несущей части при ненадежном его креплении и падения на полотно дороги.
Основные элементы шасси:
ходовая часть
трансмиссия механических транспортных средств
Ходовая часть обеспечивает управляемость и устойчивость, а также плавность хода транспортного средства и включает подвеску, мосты, раму и колеса с шинами. В данном параграфе колеса и шины и требования к ним не рассматриваются.
Подвеска — это компонент, посредством которого кузов или рама соединяется с колесами.
Существуют зависимые и независимые подвески. В зависимой подвеске вертикальное перемещение колеса по одному борту транспортного средства влияет на перемещение колеса по другому борту. В независимых подвесках оба колеса движутся независимо друг от друга. Любая подвеска транспортного средства имеет в своем составе три основные группы элементов — направляющие, упругие и гасящие.
Направляющие элементы — это часть подвески, определяющая характер перемещения колес относительно кузова или рамы. В состав направляющих элементов входят рычаги, реактивные тяги, несущие части амортизаторных стоек, поворотные цапфы, а также шарниры рычагов, тяг, поворотных цапф и стоек.
Упругие элементы — это часть подвески, обеспечивающая функцию подрессоривания. К упругим элементам относятся листовые рессоры, пружины, торсионы, пневморессоры, а также стабилизаторы поперечной устойчивости. Следует отметить, что листовые рессоры и полурессоры пневмоподвесок выполняют, как правило, также роль направляющих элементов подвесок. Кроме того, имеются конструкции подвесок легковых автомобилей, в которых стабилизатор поперечной устойчивости играет одновременно роль направляющего элемента.
Рис. Зависимые рессорные подвески и основные места их контроля: а — подвеска одиночной оси (1 — амортизатор; 2 — серьга; 3 — рессора; 4 — стабилизатор); б — балансирная тележка (1 — верхние реактивные тяги; 2 — рессора; 3 — балансирное устройство; 4 — нижние реактивные тяги)
Гасящие элементы обеспечивают затухание колебаний кузова (рамы) транспортного средства. К ним относятся амортизаторы и упругие ограничители хода подвески.
Рассмотрим особенности конструкции некоторых распространенных видов подвесок.
Зависимая рессорная подвеска
Для двухосных транспортных средств такая подвеска, как правило, выполнена для каждого колеса в отдельности. Для трехосных грузовых автомобилей задняя подвеска может быть выполнена в виде единой тележки с общими элементами подвески по каждому из бортов.
Направляющими элементами в таких подвесках являются поворотные цапфы, листовые рессоры и штанги балансирного устройства. Поворотная цапфа является элементом подвесок управляемых осей и включает шкворневой шарнир, обеспечивающий возможность поворота управляемых колес. Этот шарнир имеет, как правило, радиальные подшипники скольжения, выполненные в виде бронзовых или металлополимерных втулок, а также упорный подшипник качения или скольжения, расположенный в нижней части шарнира.
Рис. Элементы шкворневой подвески управляемой оси и основные места ее контроля: 1 — поворотный рычаг; 2 — шаровые шарниры рулевых тяг; 3 — продольная рулевая тяга; 4 — балка управляемой оси; 5 — поперечная рулевая тяга; 6 — поворотная цапфа
Листовая рессора представляет собой упругий элемент, состоящий из одного или нескольких листов. Как правило, рессора крепится посередине к неподрессоренной части транспортного средства, а по концам — к подрессоренной части в случае, когда подвеска выполнена для одного колеса, и наоборот, когда подвеска выполнена для тележки.
Многолистовая рессора представляет собой пакет из нескольких рессорных листов, скрепленных между собой. Лист, на котором выполнено или к которому крепится ушко рессоры, называется коренным, а лист (листы), который страхует подрессоренную массу транспортного средства от падения в случае поломки коренного листа или ушка, — подкоренным. Крепление рессоры посередине выполняется обычно с помощью стремянок, имеющих и-образную форму, а крепление неподвижного конца рессоры к кронштейну рамы — с помощью металлической оси, либо непосредственно контактирующей с ушком рессоры, либо связанной с ним через резинометаллический шарнир. Такая подвеска характерна для задних осей некоторых легковых автомобилей, передних осей грузовых автомобилей с нерегулируемым положением рамы, задних осей грузовых автомобилей, а также осей прицепов и полуприцепов, не обеспечивающих регулирование уровня пола по высоте.
Зависимая пневматическая подвеска
Для каждого колеса транспортного средства она может выполняться по схеме с одной или двумя пневморессорами. Направляющими элементами в таких подвесках служат полурессоры, реактивные тяги, кронштейны рамы и балки для крепления пневмоэлементов. Упругими элементами являются пневморессоры, которые позволяют не только сглаживать колебания кузова транспортного средства, вызванные неровностями дорожного покрытия, но и регулировать положение кузова (рамы) по высоте в определенных пределах.
На задних осях грузовых автомобилей, а также на осях полуприцепов широкое распространение получила подвеска с одной пневморессорой на колесо. Угловые перемещения полурессоры в кронштейне происходят посредством упругой деформации сайлентблока.
Рис. Варианты исполнения пневмоподвесок неуправляемых осей и основные места их контроля: а — с одной пневморессорой на колесо; б — с двумя пневморессорами на колесо; 1 — пневморессора; 2 — амортизатор; 3 — балка оси; 4 — полурессора; 5 — реактивные тяги; 6 — стабилизатор; 7 — опорные кронштейны
Задние подвески автобусов, а также передние и задние подвески грузовых автомобилей нередко выполняются по схеме с двумя пневморессорами на колесо. Для такой подвески характерно наличие специальных балок, расположенных в продольном направлении, к которым крепятся пневморессоры, а также наличие системы реактивных тяг, удерживающих балки от продольных и поперечных смещений и поворота вокруг своей оси.
Независимая пневматическая подвеска
Такая подвеска характерна прежде всего для управляемых осей автобусов повышенной комфортности. Один из вариантов исполнения такой подвески показан на рисунке.
Рис. Пневмоподвеска управляемой оси автобуса и основные места ее контроля: 1 — пневморессора; 2 — верхний рычаг; 3, 8 — резинометаллические втулки; 4 — нижний рычаг; 5 — кран уровня подвески; 6 — стабилизатор поперечной устойчивости; 7 — амортизатор; 9 — опорная стойка
В качестве направляющих элементов такой подвески служит пара поперечных рычагов, расположенных в двух уровнях по вертикали, и шкворневая поворотная цапфа, имеющая в верхней части площадку для установки пневморессоры. Перемещения рычагов происходят, как правило, в резинометаллических шарнирах.
Независимая пружинная подвеска управляемой оси
Такая подвеска имеет две основные разновидности: на двойных поперечных рычагах и в виде амортизаторной стойки (подвеска «МакФерсон»).
Подвеска на двойных поперечных рычагах применяется на некоторых видах легковых автомобилей и легких грузовиков.
Рис. Подвески управляемых осей легковых автомобилей и их основные места контроля: а — типа «МакФерсон»; б — на двойных поперечных рычагах; 1 — рычаги подвески; 2 — стабилизатор; 3 — верхняя опора амортизаторной стойки; 4 — амортизатор; 5 — амортизаторная стойка; 6 — поворотная цапфа; 7 — шаровые опоры
В качестве направляющих элементов в такой подвеске служит пара поперечных рычагов, расположенных в двух уровнях по вертикали, а также поворотная цапфа, имеющая либо шкворневой шарнир, либо пару шаровых опор. Один из вариантов такой подвески с шаровыми опорами приведен на рисунке. Перемещение рычагов в угловом направлении относительно кузова происходит в резинометаллических шарнирах, а поворот цапфы относительно рычагов — в шаровых опорах.
Подвеска «МакФерсон» в настоящее время очень широко распространена на легковых автомобилях. В качестве направляющих элементов такой подвески служат амортизаторные стойки, поворотные цапфы, рычаги, в отдельных случаях — стабилизаторы. Важным элементом подвесок такого типа является верхняя опора амортизаторной стойки, которая содержит резинометаллический шарнир и радиально-упорный подшипник, воспринимающий вертикальную и боковую нагрузки на колесо, а также позволяющий стойке поворачиваться при повороте управляемых колес. Поворот цапфы относительно рычага в таких подвесках происходит в шаровой опоре. При этом рычаг двигается в угловом направлении относительно кузова в резино-металлических шарнирах.
Основным гасящим элементом подвесок всех видов являются амортизаторы, которые крепятся к подрессоренным и неподрес- соренным элементам с помощью проушин или стержней. При стержневом креплении шток и корпус амортизатора крепятся резиновыми втулками, а в случае проушин — посредством конических резиновых втулок или резинометаллических шарниров.
Рис. Схема работы системы регулировки уровня кузова (рамы): 1 — ресивер; 2 — электромагнитный пневмоклапан; 3 — пневморессора; 4 — датчик уровня подвески; 5 — электронный блок управления; 6 — пульт управления
Пневматические подвески многих транспортных средств оснащаются системой регулирования уровня кузова (рамы) транспортного средства. Принципиальная схема такой системы представлена на рисунке.
Датчик уровня подвески в такой системе служит для определения текущего уровня подрессоренной части транспортного средства относительно неподрессоренной. При значении этого уровня выше заданного блок управления системой подает сигнал на пневмоклапан сброса воздуха из пневморессор. При значении уровня ниже заданного блок управления системой подает сигнал на пневмоклапан подачи воздуха в пневморессоры. Заданное положение подвески можно устанавливать путем приведения в действие соответствующего крана или нажатия кнопок на дистанционном пульте управления.
При эксплуатации подвижного состава основными устройствами, защищающими его от динамических воздействий дороги и сводящими колебания и вибрации к приемлемому уровню, являются подвески и шины.
Опытом установлено, что дорожные неровности, вызывающие колебания подвижного состава, ведут к значительному снижению технико-эксплуатационных и экономических показателей. Это проявляется в снижении провозных возможностей подвижного состава вследствие уменьшения средней скорости доставки грузов и пассажиров, возрастания расходов на техническое обслуживание и ремонт.
Для уменьшения этих потерь могут быть использованы два направления:
строительство дорог с усовершенствованным покрытием
создание более качественной подвески
Наряду с этим при длительной езде в подвижном составе вследствие колебания кузова у водителя и пассажиров часто появляются усталость и другие неприятные ощущения. Это приводит к снижению производительности труда водителей.
Плавность хода ⭐ подвижного состава автомобильного транспорта — это возможность длительной езды по различным дорогам без утомления или тягостных ощущений у пассажиров, обеспечивая при этом высокие скорости движения. Кроме того, к плавности хода подвижного состава в ряде случаев предъявляют требования по обеспечению сохранности перевозимых грузов.
При анализе плавности хода выделяют две основные составные части конструкции подвески:
подрессоренные
неподрессоренные
Подрессоренная часть включает в себя все агрегаты и узлы (кузов, двигатель, кабина и др.), масса которых воспринимается упругими элементами подвески.
Неподрессоренные части включают в себя все агрегаты и узлы, масса которых не воспринимается рессорами (мосты, колеса). Детали, которые крепят подрессоренные и неподрессоренные массы (упругие элементы, карданные валы, рычаги подвески и амортизаторов, реактивные штанги), условно делят пополам и относят соответственно к подрессоренным и неподрессоренным массам.
При движении подвижного состава появляется два вида колебаний — низкочастотные и высокочастотные. Низкочастотные колебания достигают 15 …18 Гц. Граница вибрационной чувствительности человеческого организма составляет 15 … 1500 Гц. Кузов автомобиля испытывает одновременно колебания и вибрации. Частота колебаний подрессоренных масс (кузова) на упругих элементах составляет 1,0 … 2,5.Гц, а частота колебаний колес — 6 … 15 Гц. Вибрации двигателя, трансмиссии, частей кузова происходят с частотами 17 … 70 Гц.
Амортизатор — это устройство предназначенное для гашения и поглощения поперечных колебаний рамы или кузова, возникающих в результате деформации рессор и пружин при движении автомобиля, путем превращения механической энергии движения в тепловую. В связи с повышенными требованиями к плавности хода амортизаторы стали одним из основных элементов подвески современных автомобилей.
На автомобилях и автобусах наиболее широко применяют гидравлические амортизаторы, в которых используют сопротивление (внутреннее трение) сравнительно вязкой жидкости, проходящей через калиброванные отверстия малых диаметров и ограниченные сечения в клапанах. Полный цикл колебаний рамы кузова) относительно моста и колес включает в себя два периода:
ход сжатия рессоры (пружины), когда подрессоренная часть (рама с платформой сближается с неподрессоренной частью (мостами и колесами)
ход отдачи рессоры (пружины), когда подрессоренная часть удаляется от неподрессоренной
2 группы амортизаторов
амортизаторы двустороннего действия
амортизаторы одностороннего действия (гасят колебания только при ходе отдачи рессоры)
Амортизаторы двустороннего действия способствуют более плавной работе подвески, поэтому они почти полностью вытеснили амортизаторы одностороннего действия.
Схематично устройство гидравлического амортизатора двухстороннего действия показано на рисунок. Амортизатор состоит из уравновешивающего резервуара С, рабочего цилиндра 2, штока 6 с поршнем 1 и клапанов перепускного IΙ, отдачи I, впускного IΙI, сжатия IV. В верхней части шток поршня перемещается в направляющей втулке 8 которая служит вместе с уплотнением 5 для предохранения штока амортизатора от возникающих изгибающих моментов и поперечных сил.
В рабочем цилиндре 2 вместе со штоком 6 перемещается поршень 1, в котором имеются сквозные отверстия, равномерно расположенные в два ряда по окружностям различных диаметров. Отверстия, находящиеся на большой окружности, закрыты сверху перепускным клапаном I, к которому прижимается пружинная шайба. Отверстия на меньшей окружности перекрываются снизу дроссельным диском клапана отдачи IΙ .
В нижней части рабочего цилиндра расположен корпус, в котором установлены впускной клапан IΙ I и клапан сжатия IV, прижимаемый пружиной. Эти клапаны закрывают отверстия, расположенные в корпусе.
Между цилиндром 2 и кожухом 7 находится уравновешивающий резервуар С, заполненный маслом примерно на половину объема. Оставшийся незаполненным объем уравновешивающегося резервуара служит для заполнения маслом при изменении его температуры, которая может колебаться от -20° до +200°С. Уровень жидкости в уравновешивающем резервуаре рассчитан таким образом, чтобы воздух не попадал в рабочую полость амортизатора через клапан сжатия при снижении уровня в наклонном положении амортизатора (до 45°).
К штоку и резервуару приварены проушины. Нижней проушиной амортизатор крепится к балке или к нижним рычагам переднего моста при независимой подвеске, а верхней – к кронштейну рамы или основания кузова. От повреждений и попадания грязи шток защищен кожухом 7.
Во время хода сжатия (пружины) рессоры (наезд колеса на выпуклость) поршень амортизатора движется вниз, перепускной клапан I Ι открывается и жидкость перетекает через отверстия поршня в рабочую полость А. Под давлением жидкости клапан сжатия I V преодолевает усилие пружины и открывается, при этом жидкость в объеме, равном вводимой части штока, вытесняется из рабочего цилиндра в уравновешивающий резервуар С. Усилие пружины клапана сжатия создает необходимое сопротивление амортизатора, в результате чего частота колебаний подвески и подрессоренных масс автомобиля уменьшается. При перемещениях штока жидкость, частично просачиваясь через зазор между направляющей втулкой и штоком, через разгрузочное отверстие 9 поступает в полость уравновешивающего резервуара, разгружая тем самым сальники от действия рабочего давления жидкости.
Во время хода отдачи (попадание колеса во впадину) поршень движется вверх, вытесняя жидкость из верхней рабочей полости А в нижнюю. Перепускной клапан IΙ, расположенный со стороны надпоршневого пространства, закрывается, и жидкость через отверстия поршня поступает к клапану I отдачи и открывает его. При этом жидкость в объеме, равном выводимой части штока, поступает из уравновешивающего резервуара в рабочий цилиндр через отверстия, предварительно преодолев сопротивление впускного клапана IΙI.
Жесткость дисков клапана отдачи I и усилие его пружины создают необходимое сопротивление амортизатора которое пропорционально квадрату скорости перетекания жидкости.
При движении автомобиля необходимо, чтобы амортизатор гасил в основном свободные колебания подвески при ходе отдачи (распрямления рессоры или пружины) и не увеличивал их жесткость при сжатии. Поэтому сопротивление хода сжатия составляет 25…30 % сопротивления хода отдачи.
Недостатком двухстороннего амортизатора является наличие уравновешивающего резервуара, который охватывает рабочий цилиндр и усложняет охлаждение его. Между тем, гашение колебаний сводится к тому, что их механическую энергию амортизатор преобразует в тепловую энергию, что в свою очередь приводит к повышению температуры масла, а значит и снижению его вязкости. Вследствие этого снижаются усилия сжатия и отбоя.
Усилие отбоя в одних случаях оборачивается раскачиванием автомобиля как целого (на плавных, волнообразных неровностях дороги), в других – возникновением сильных вертикальных колебаний подвески с «отскакиванием» колес от покрытия. И тогда устойчивость, управляемость, тормозные свойства автомобиля на неровной дороге становятся неудовлетворительными.
К тому же в амортизаторах этого типа даже специально подобранное маловспенивающееся масло при больших скоростях колебаний (пропорциональных произведению хода на частоту колебаний) порой вспенивается. Причина в том, что масло проходит через узкие проходы (зазоры в клапанах, каналы, сверления) с очень большими скоростями и при пониженных давлениях, в результате чего возникает кавитация (образование пузырьков разрежения). Этому способствует и повышение температуры амортизатора при интенсивной работе. Все это препятствует нормальной работе амортизатора, так как сопротивление вспененного масла во много раз меньше сопротивления неразрывного объема масла. Амортизатор перестает гасить колебания. Это одна из причин того, что некоторые амортизаторы, вполне приемлемые для езды с комфортом по обычным дорогам, непригодны для спортивного типа езды.
Видео: Какие амортизаторы лучше и надежнее — газовые, масляные или газомаслянные?