Метка: Тормозная система
Ленточный тормоз
Трансмиссионный (центральный) тормоз, дисковый тормоз
Схема тормоза
Рис. Схема тормоза: 1 — тормозной барабан; 2 — оттяжная пружина тормозной колодки; 3 — опорный палец; 4 — фрикционная накладка; 5 — вторичная тормозная колодка, ведомая тормозная колодка; 6 — первичная тормозная колодка, ведущая колодка, самотормозящая колодка; 7 — регулировочный винт; 8 — гидроцилиндр; Стрелкой указано направление вращения тормозного барабана при движении автомобиля вперёд.
Схема колёсного тормоза
Электрический тормоз
Разработки многих разделов в области электрических тормозов продвинулись весьма далеко. Однако постепенно приходит осознание того, что полностью электрическая работа тормозов, то есть с удалением гидравлической/механической связи, будет все же реализована несколькими годами позже. Тем не менее, уже сейчас функции тормозной системы претерпевают плавную и непрерывную эволюцию.
Полностью электрическая система тормозов обеспечивает значительные функциональные и конструктивные преимущества. Некоторые из них состоят в следующем:
- безопасность — сокращенное время реакции всего на полсекунды смогло уменьшить число летальных исходов при лобовых столкновениях приблизительно на 30-50%;
- окружающая среда — тормозная жидкость ядовита и требует замены в течение срока службы транспортного средства;
- управление — последовательный и интегрированный подход поможет реализации и других функций, например, таких как адаптивный круиз-контроль и контроль устойчивости;
- комфорт — более слабое и регулируемое усилие на педаль, а также возможность реализации режима движения типа «подъем-спуск» служат хорошим дополнением к мастерству водителя.
Необходимость применения отказоустойчивой электрической системы и соображения относительно ее стоимости пока приводят к тому, что все текущие разработки сохраняют гидравлическую систему. На рисунке показана эволюция тормозных систем и направления их будущего проектирования.
Рис. Эволюция электрических тормозных систем (источник: Infineon)
В 1978 г. компания Bosch выпустила первую электронно-управляемую антиблокировочную тормозную систему (ABS); девять лет спустя компания подарила миру систему управления тягой (TCS). Следующим новшеством стала выпущенная в 1995 г. программа электронной устойчивости (ESP). Самой передовой в современном автомобилестроении является система электрогидравлических тормозов (electro-hydraulic brake — EHВ) ), также известная как контроль тормозов Sensotronic (Sensotronic Brake Control — SBC). Она было разработана совместными усилиями компаний Bosch к Mercedes.
Компания Boech серьезно исследовала систему полностью электрических тормозов, но отложила ее в сторону по техническим причинам. Пока в автомобиле нет полностью избыточной, то сеть дублированной сети питания 42 В, вероятность того, что эта технология находится на пути внедрения в качестве стандартной, не слишком велика.
Компания Bosch следует идее выпуска серий масштабируемых изделий в определенных диапазонах, базирующихся на технологии ESP, то есть номенклатуры изделий, чьи особенности и спецификации работы могут быть расширены. В отличие от существующей технической концепции электрогидравлического тормоза, это новое устройство основано на обычной системе торможения.
Однако устройство может выполнять все связанные с водителем дополнительные функции за счет электрогидравлических средств (посредством проводов), не требуя сложных и дорогостоящих изменений в электрической системе автомобиля. Компания работает над повышением безопасности и/или удобства и расширением возможностей своих систем:
- электронный тормоз с предустановкой — если водитель внезапно снимет свою ногу с педали акселератора, то тормозная система получает предупреждение о потенциально аварийной ситуации. Тормозные колодки немедленно перемещаются к дискам тормоза так, чтобы не было никакой задержки, замедления транспортного средства, если будет предпринято чрезвычайное торможение;
- вытирание тормозных дисков — при сильном дожде тормозные диски покрывает влажная пленка. Тормозные колодки выполнены таким образом, чтобы на краткое время регулярно касаться дисков, удаляя пленку воды и помогая тормозам при необходимости быстрее войти в контакт с поверхностью тормозного барабана;
- мягкая остановка — эта функция способствует плавному торможению без рывков за счет сокращения тормозного давления незадолго до того, как транспортное средство полностью остановится;
- контроль удержания на подъеме — предотвращение неумышленного скатывания назад при стартах на уклонах. Тормозная система автоматически поддерживает тормозное давление и останавливает транспортное средство, катящееся назад, пока водитель снова не нажмет педаль акселератора;
- стоп-старт — эта функция расширяет возможности дистанционного управления адаптивной системой круиз-контроля (Adaptive Cruise Control — АСС)). Используя данные датчиков, эта функция может автоматически остановить транспортное средство и затем вновь заставить его двигаться, если позволит трафик, без необходимости водителю предпринимать какие-либо действия.
Рис. Тормозная система автоматической парковки (источник: Bosch Press)
Автоматический тормоз парковки (automatic parking brake — АРВ) — другая привлекательная функция, обеспечивающая повышенный комфорт и удобство водителю. Так как в этом случае исчезает необходимость в рычаге ручного тормоза, автопроизводители имеют больше свободы выбора в отношении того, куда им поместить функциональные части в пределах автомобиля. В этой системе используется технический принцип, похожий на принцип действии шариковой ручки, где пишущий стержень выталкивается давлением пальца, а затем удерживается в положении механизмом захвата, пока кнопка не будет нажата еще раз.
Когда водитель нажимает кнопку, чтобы активировать тормоз стоянки, блок ESP автоматически повышает давление в тормозной системе и зажимает тормозные колодки вокруг диска. Далее суппорты блокируются в этом положении — встроенный в суппорт электромагнитный клапан приводит в действие гидравлический блокирующий механизм. Затем суппорт остается заблокированным без какого-либо гидравлического давления. Чтобы отпустить тормоз, ESP снова быстро повышает давление немного больше, чем было необходимо, чтобы заблокировать суппорт.
Развитие электрических тормозов будет продолжаться, потому что эта система имеет потенциал для значительного улучшения тормозных характеристик автомобиля!
Управление устойчивостью в модели Porsche
Новая модель Porsche 911 Carrera 4 является первой моделью компании Porsche, которая иллюстрирует систему управления устойчивостью этой компании (Poischc Stability Management — PSM). В основе системы лежит комбинация четырехколесного привода, сконструированного для спортивного вождения, и электронного управления подвеской, тщательно подогнанной к характеру машины. В результате компания добилась не только высокого стандарта безопасности вождения, но также и того, что водители получают огромное удовольствие от вождения Porsche и смогли оценить его по достоинству за последние 50 лет. На рисунке показана компоновка системы PSM.
Рис. Система управления устойчивостью Porsche:
1. Датчик скорости колеса
2. Датчик скорости заноса
3. Датчик поперечного ускорения
4. Датчик углового положения руля
5. Преднагруженный насос с датчиком давления
6. Гидравлический агрегат PSM 5.3
7. Блок управления PSM
8. Выключатель PSM
9. Блок управления «Мотроник»
По объективным отзывам об управлении и характеристикам подвески можно судить об ее отличиях от систем, применяемых в других автомобилях. Фирма Porsche намерена поддерживать в своих моделях живой, спортивный и динамичный характер вождения при любых усовершенствованиях. Кроме того, благодаря большому резерву безопасности, обеспечиваемому подвеской, водитель должен вмешиваться в поведение автомобиля только на сухих дорогах при движении в условиях, близких к условиям гонок. В то же самое время PSM осторожно и почти незаметно исправляет любые незначительные отклонения в устойчивости автомобиля, связанные с изменениями нагрузки или использованием тормозов на изгибе дороги.
Инженеры компании Porsche позволяют PSM более энергично и раньше вмешиваться в движение во время езды по влажным или скользким дорогам и, в частности, на дорожных поверхностях с переменным коэффициента трения. В этих условиях PSM также намного укорачивает тормозной путь, поддерживая устойчивость движения автомобиля при применении тормозов.
В своей работе PSM следует двум фундаментальным стратегиям:
- Во-первых, она использует известную концепцию продольного управления с системой антиблокировки тормозов (ABS), системой регулирования антипроскальзывания колес и автоматической дифференциацией тормозов, что позволяет удерживать автомобиль точно на курсе во время ускорения и торможения на прямом участке или на повороте.
- Во-вторых, PSM также использует боковой или поперечный, контроль, что обеспечивает надежную устойчивость автомобиля, даже когда он подвергается существенным боковым силам на изгибе дороги. Необходимые корректировки курса обеспечиваются определенным, тщательно контролируемым применением тормозов.
Любой тенденции перерегулирования, приводящей к закручиванию вокруг своей оси задней части автомобиля, противодействует точное, идеально выверенное применение тормозов на внешнем переднем колесе на изгибе дорога. Недорегулирование, в свою очередь, предотвращается применением тормозом на заднем внутреннем колесе. Продольный динамический контроль также входит в компетенцию системы. В Carrera 4 дополнительное положительное влияние на устойчивости достигается при помощи технологии E-Gas, регулирующей положение дроссельной заслонки согласно определенным требованиям. На дороге эта технология обеспечивает значительно более легкое и плавное руление.
Чтобы гарантировать точную работу, PSM учитывает множество величин. Датчики скорости колеса, введенные впервые вмести с ABS, не только обеспечивают информацию относительно скорости автомобиля, ускорения и замедления, но также в состоянии по разнице в скорости колес слева и справа обнаруживать изгибы дороги и их радиус. Другие используемые датчики — это датчик угла поворота руля, датчик бокового ускорения и датчик заноса, предназначенный для обнаружения любой тенденции автомобиля к дрейфу.
Все данные с датчиков сохраняются в недрах компьютера PSM, оцениваются в пределах долей секунды и передаются как инструкции к системе E-Gas или тормозной системе. В результате PSM реагирует намного быстрее в угрожающих ситуациях, чем даже самый опытный водитель.
В жизни восторженные водители, желающие испытать «естественное» динамичное поведение их Carrera 4 на круговой трассе с прямолинейными участками, могут дезактивировать боковой динамический контроль, обеспеченный системой управления устойчивостью Porsche, просто щелкнув выключателем на приборной панели. И даже тогда риск, возникающий при бросании автомобиля в скольжение, разумно ограничен, так как все, что водитель должен делать, когда угол поворота автомобиля становится критическим, это нажать на тормоза, чтобы оживить динамическую функцию управления. В любых обстоятельствах PSM в состоянии подкорректировать движение автомобиля, но, конечно, никогда не опровергнет полностью законы физики.
Системы поддержки тормозов
Системы поддержки тормозов могут быть разработаны по той очевидной причине, что водители не понимают полную выгоду от установки антиблокировочных тормозных систем (ABS). Введение систем ABS вопреки ожидания и, увы, не привело к сокращению несчастных случаев. Причины этого явления спорны, одно из мнений состоит в том, что многие водители недостаточно сильно нажимают на педаль тормоза в момент чрезвычайной остановки, поэтому шипы не начинают скользить в такой степени, чтобы вызвать действие антиблокировочной системы.
Чтобы решить эту проблему, компании постоянно работают над системами поддержки тормозов, которые подают на тормоза более высокое давление, чем обычно, при чрезвычайных ситуациях. Критической для системы является ее способность различать, является ли торможение аварийным или нет. В стадии разработки находятся не только датчики силы педали, но и датчики силы педали в сочетании со скоростью нажатия, так как именно это определяет стратегию управления. Если полевые испытания дадут удовлетворительные результаты, системы поддержки тормозов могли бы быть относительно быстро внедрены в массовое производство.
Электрические приводы могут даже начать занимать место обычных тормозных цилиндров колес. Прецизионно управляемые моторы постоянного тока, установленные на тормозных барабанах, имеют потенциальные преимущества за счет меньшего веса и стоимости системы. Разработки ведутся и в области магнитного торможения, что потенциально позволило бы отказаться от изнашивающихся компонентов тормозной системы автомобиля!
Управление тягой
Управляемость автомобили теряется не только тогда, когда колеса блокируются при торможении; тот же самый эффект возникает, если колеса проскальзываю при попытке разогнаться с большим ускорением. Электронный контроль тяги был разработан как приложение к ABS. Эта система управления препятствует проскальзыванию колес в случае резкого ускорения при трогании с места и во время движения автомобиля. В этом методе притормаживается каждое отдельное проскальзывающее колесо. Если проскальзывают два и более колее, управляющая двигателем система уменьшает его вращающий момент. Система управления тягой известна как ASR или TCR.
Контроль тяги обычно нельзя использовать как независимую систему, а только в комбинации с ABS, потому что многие из требуемых компонент — те же самые, что и используемые в ABS. Контроль тяги требует доработки только логики управления в ECU и нескольких дополнительных элементах управления, например, таких как управление дроссельным клапаном. На рисунке показана блок-схема системы управления тягой. Отметьте связи данной системы с ABS и системой управления двигателем.
Рис. Система управления тягой
Контроль тяги позволяет:
- поддерживать устойчивость автомобиля
- сократить время реакции на занос
- обеспечить оптимальную тягу на всех скоростях
- уменьшить нагрузку на водителя
Рис. Блок управлении ABS и тягой на модуляторе
Хорошая система управления тягой также обеспечивает следующие преимущества:
- упеличенняя сила тяги
- большая безопасность и стабильность автомобиля на плохих дорожных покрытиях
- меньшее напряжение водителя
- более длительный срок эксплуатации шин
- отсутствие проскальзывания колес на поворотах
Автоматическая система управления может во многих ситуациях среагировать белее быстро и точно, чем водитель транспортного средства. Это позволяет поддерживать устойчивость автомобиля в то время, когда водитель, возможно, был бы не в состоянии справился с ситуацией. На рисунке показана система ABS и модулятор контроля тяги с дополнением в виде блока управления ECU.
Функции управления
Рис. Сравнение трех методов предотвращения проскальзывания колес: дросселирование, зажигание и торможение
Контроль силы тяги может быть выполнен разными способами. На рисунке сравниваются три варианта, используемые для предотвращения проскальзывания колеса: управление дроссельным клапаном, управление зажиганием и управление торможением.
Управление дроссельным клапаном
Управление дроссельным клапаном может осуществляться через привод, перемещающий тросик дроссельной заслонки. Если транспортное средство использует электрический акселератор типа «приводной двигатель», тогда управление будет осуществляться с участием блока управления двигателем. Такое управление дроссельным клапаном не будет зависеть от положения педали газа водителя. Но этот метод сам по себе относительно медленный, чтобы управлять с его помощью вращающим моментом двигателя.
Управление зажиганием
Если задерживается зажигание, то вращающий момент двигателя может быть уменьшен на 50% за очень короткий интервал времени. Выбор момент зажигания регулируется с учетом данных карты значении зажигания.
Управление торможением
Если проскальзывание колеса ограничено давлением в тормозах, вращающий момент в регулируемом колесе уменьшается очень быстро. Максимальное давление торможения не используется, чтобы гарантировать комфорт для пассажиров.
Функционирование системы управления тягой
Рис. Компоновка системы управления транспортного средства
Компоновка системы управления тягой, которая включает связи с другими системами управления транспортного средства, показана на рисунке. Ниже приведено описание работы системы для транспортного средства с электронным акселератором (электрически управляемым приводом).
Простой датчик определяет положение акселератора и с учетом других переменных, например, температуры и скорости двигателя, дроссельный клапан устанавливается в оптимальное положение при помощи сервомотора. Во время ускорения увеличение вращающего момента двигателя приводит к увеличению вращающего момента на валах колес. Для оптимального ускорения на поверхность дороги должна воздействовать максимально возможная сила со стороны колеса. Если вращающий момент привода колес превысит величину, зависящую от сцепления колеса с грунтом, тогда произойдет проскальзывание обоих или одного колеса. В результате транспортное средство теряет устойчивость.
Когда будет обнаружено проскальзывание колеса, система начинает регулировать положение дроссельного клапана и выбор времени зажигании, то лучшие результаты получаются тогда, когда на проскальзывающем колесе включаются тормоза. Это не только препятствует скольжению колеса, но и обеспечивает ограниченное проскальзывание с распределением тормозящего эффекта между колесами. Такой принцип особенно хорошо работает на дороге с изменением коэффициента сцепления. Когда включаются тормоза, сдвигается клапан на гидравлическом узле модулятора, что запускает систему управления тягой. Давление от насоса передается на тормоза проскальзывающего колеса. Клапана — таким же образом, как и в системе ABS — могут обеспечить наращивание давления, удержание давления и уменьшение давления. Все это происходит и без касания водителем педали тормоза.
В итоге торможения проскальзывающего колеса выравнивается суммарный коэффициент торможения для каждого ведущего колеса.
Система антиблокировки тормозов компании Honda
Рис. Система ABS компании Honda
Действие системы антиблокировки тормозов компании Honda основано на принципе плунжерного механизма. На рисунке показана схема системы. Когда антиблокировочная система не работает, камера W связана с резервуаром через выпускной клапан. Камера находится при атмосферном давлении, потому что входной клапан блокирует трубопровод от аккумулятора давления. Во время торможения в главном цилиндре создается давление, и поток жидкости перетекает от камеры Z в камеру X, перемещая поршень и увеличивая давление в камере Y.
Если колесо находится под угрозой блокирования, выпускной клапан закрывается, и давление в камере W увеличивается, что предотвращает дальнейшее движение поршня, таким образом сдерживая давление торможения. Если риск блокировки продолжает сохраняться, клапан входного отверстия открывается и позволяет жидкости течь от аккумулятора в камеру W. Это давление перемешает поршень назад, уменьшая, таким образом, давление в тормозном цилиндре колеса. Когда риска блокировки больше нет, клапан входного отверстия закрывается и восстанавливается режим удержания давления.
Система ABS Honda относительно проста и имеет только два канала управления. Переднее колесо, которое в момент торможения имеет более высокий коэффициент трения о поверхность дорога, определяет давление торможения для обоих передних колес. В результате одно переднее колесо может быть заблокировано во время чрезвычайного торможения. Заднее колесо с более низким коэффициентом трения определяет давление торможения задних колес.
Система антиблокировки тормозов (ABS) и требования к ней
Существует несколько причин для разработки системы антиблокировки тормозов (anti-blok brakes — ABS). Если при торможении одного или более колес транспортного средства блокируется (начинает скользить), возникает ряд неприятных последствий:
- увеличивается тормозной путь
- теряется контроль над рулем
- ненормально изнашиваются шины
Блокировка колес с большой вероятностью может привести к несчастному случаю. Наилучшее замедление транспортного средства достигается тогда, когда в тормозной системе имеет место максимальное преобразование кинетической энергии автомобиля в тепловую энергию на тормозных дисках и барабанах. Скользящая шина даже на сухой дороге далеко не обеспечивает достижение предельного возможного потенциала этого процесса. Опытный водитель может сам подкачивать тормоза, нажимая и отпуская педаль, для предотвращении блокировки тормозов, но электронный контроль позволяет достигнуть гораздо лучших результатов.
ABS становится все более обычной функцией даже на недорогих автомобилях, что должно стать существенным вкладом в безопасность автомобильного движения. Важно помнить, однако, что при нормальном движении система не предназначена для того, чтобы максимально быстрые разгоны сменялись максимально короткими торможениями. Работа система должна рассматриваться как помощь только в критическом положении.
Хороший способ проанализировать действие сложной системы состоит в том, чтобы задаться вопросом: Что должна система быть в состоянии делать? Другими словами, каковы требования к системе? Эти требований для ABS можно pacсмотреть в разделах со следующими заголовками.
Отказоустойчивая система
В случае отказа системы ABS обычные тормоза должны срабатывать на максимуме своих возможностей. Кроме того, водитель должен получить предупреждение об отказе. Предупреждение обычно реализуется с помощью простого индикатора.
Маневренность автомобиля должна быть сохранена
Послушность машины рулю и сцепление с дорогой не должны исчезнуть при включении системы ABS. Это, вероятно, ключевой вопрос, так как водителю важно быть в состоянии увильнуть от опасности, хотя мощное торможение часто оказывается самым лучшим образом действия.
Реакция должна быть немедленной
Даже на коротком расстоянии система должна реагировать так, чтобы лучше всего использовать сцепление с дорогой. Реакция должна быть адекватной независимо от того, нажимает ли водитель на тормоза мягко или нетерпеливо ударяет по ним что есть мочи.
Влияние на движение
Нормальное движение к маневрирование не должны оказывать никакой реакции на педаль тормоза. Устойчивость и послушность рулю должны быть сохранены при всех дорожных условиях. Система должна также адаптироваться к гистерезису торможения, то есть режиму, когда тормоза нажимают, отпускают, а затем снова нажимают. Даже если колеса с одной стороны находятся, например, на сухом гудронированном шоссе, а с другой стороны — на льду, занос (вращение вокруг вертикальной оси) транспортного средства должен быть сведем к минимуму, и если проявляться, то настолько медленно, чтобы дать водителю возможность его компенсировать.
Управляемые колеса
В общем случае, по крайней мере одно колесо на каждой стороне транспортного средства должно контролироваться по отдельной цепи. Теперь это является общим принципом для всех четырех колес, которые на пассажирских автомобилях управляются независимо друг от друга.
Работа в широком диапазоне скоростей
Система должна работать при любом снижении скорости вплоть до прогулочной. На этой очень медленной скорости, даже когда колеса заблокированы, транспортное средство придет в неподвижное состояние очень быстро.
Прочие условия работы
Система ABS должна быть в состоянии распознать аквапланирование и реагировать соответственно. Она должна также оставаться работоспособной на неровной дорожной поверхности.
Есть еще одна область, в которой система пока несовершенна, — это торможение на медленной скорости по снегу. ABS фактически увеличивает тормозной путь по снегу, но направление руления будет сохранено. Это, как полагают, является разумным обменом.
В эксплуатации находится множество различных типов систем антиблокировки тормозов (ABS), но все они пытаются соответствовать изложенным выше требованиям.
Схема пневматического привода тормозных механизмов автомобиля КамАЗ
Рис. Схема пневматического привода тормозных механизмов автомобиля КамАЗ:
К — компрессор; РД — регулятор давления; ПрЗ — предохранитель воздушной системы от замерзания; ДвЗК — двойной защитный клапан; ТрЗК — тройной защитный клапан. ВБ — воздушный баллон; РТ — рабочий тормоз; М — манометр двухстрелочный; ЗТС — запасная тормозная система; СТ — стояночная тормозная система; ТС — тормозная система; ВсТ — вспомогательный тормоз; КрУ — кран управления запасной и стояночной тормозной системы; УсКл — ускорительный клапан; ДвМПКл — двухмагистральный перепускной клапан; ПнКр — пневматический кран; ЗОКл — защитный одинарный клапан; КлУТП — клапан управления тормозами прииепа; Д — датчик падения давления в баллоне; КлКВ — клапан контрольного вывода; Кл, Л — дополнительные клапаны контрольных выводов; ТДвКр — тормозной двухсекционный кран; АРТС — автоматический регулятор тормозных сил; ТК-24 — тормозная камера типа 24; ТКЭ-20 — энергоаккумулятор с тормозной камерой типа 20; ДСС — датчик стоп-сигнала; Е — питающая магистраль двухприводного привода; Ж — соединительная магистраль двухпроводного привода; И — тормозная (управляющая) магистраль двухпроводного привода прицепа; ПЦРОДб — пневматический цилиндр рычага остановки двигателя; ПИЗВсТ — пневматический цилнидр привода заслонки вспомогательного тормоза; <-|- направление потока воздуха в 1-м контуре от тормозного крана к тормозным камерам переднего моста; <-||- направление потока воздуха во 2-м контуре от тормозного крана к тормозным камерам энергоаккумуляторов задней тележки
Заполнение системы гидравлического привода к тормозным механизмам рабочей жидкостью
Систему гидравлического привода к тормозным механизмам колес заполняют только специальной тормозной жидкостью (ТУ МХП СССР № 1608—47 и № ОШ 264—54), представляющей собой смесь касторового масла (50% по весу) и бутилового или изобутилового спирта (50% по весу).
Совершенно недопустимо добавление в систему хотя бы самого незначительного количества минеральных масел, бензина, керосина или их смесей, вызывающих неизбежное разрушение резиновых манжет и клапанов, изготовленных из натурального каучука.
Тормозную жидкость заливают в питательный бачок главного цилиндра тормоза до уровня на 10—15 мм ниже верхней кромки бачка.
Для обеспечения работоспособности привода при заполнении его жидкостью необходимо полностью удалить из него воздух. Это достигается при следующей последовательности операций:
- Заполнить бачок жидкостью до нормального уровня.
- Очистить от пыли и грязи клапаны для выпуска воздуха колесных тормозных цилиндров и места вокруг клапанов.
- Снять резиновый защитный колпачок с клапана выпуска воздуха колесного цилиндра заднего правого колеса и надеть на головку клапана резиновый шланг. Свободный конец резинового шланга погрузить в тормозную жидкость, налитую в чистый стеклянный сосуд емкостью не менее 0,5 л, заполненный на половину его высоты.
- Удерживая шланг погруженным в жидкость, резко нажать 4—5 раз на педаль тормоза (с интервалом между нажатиями в 1—2 сек), затем, оставив педаль нажатой, отвернуть на 1/2— 1/4 оборота клапан выпуска воздуха. Под действием предварительно созданного в системе давления часть жидкости и содержащийся в ней воздух выйдут через шланг в сосуд с жидкостью (при этом воздух из шланга будет выходить в виде пузырьков).
- После того как прекратится истечение жидкости из шланга, завернуть клапан выпуска воздуха до отказа.
- Повторять операции 4 и 5 до тех пор, пока полностью не прекратится выделение пузырьков из шланга, погруженного в сосуд с жидкостью. При удалении воздуха из системы гидропривода добавляют тормозную жидкость в питательный бачок, не допуская снижения уровня в нем более чем на 2/3 от нормальной величины. После того как прекратится выход пузырьков воздуха из шланга, следует, удерживая педаль нажатой, завернуть до отказа клапан выпуска воздуха и только после этого снять с его головки шланг. Далее надевают на головку клапана защитный колпачок и добавляют в бачок жидкость до нормального уровня. В указанном порядке удаляют воздух из трубопроводов и из колесных цилиндров остальных тормозов, соблюдая последовательность: задний правый, задний левый, передний правый и передний левый. Следует иметь в виду, что тормозной механизм каждого переднего колеса имеет один общий клапан для выпуска воздуха для обоих колесных цилиндров.
- Долить жидкость в бачок главного цилиндра до нормального уровня, поставить па место крышку бачка. Тормозная жидкость, выпущенная в сосуд при прокачивании системы, может быть вновь использована для заправки лишь после того, как она отстоится (не менее суток) до полного удаления содержащегося в ней воздуха и будет профильтрована. При работе с тормозной жидкостью следует иметь в виду, что она может оставлять пятна на окрашенных поверхностях кузова, и поэтому заливать ее нужно аккуратно.
Тормоза автомобиля Москвич 408
Тормозная система автомобиля состоит из тормозных механизмов, установленных на каждом колесе, и двух самостоятельных приводов для управления ими.
Ножной гидравлический привод действует на тормозные механизмы всех колес и служит для торможения движущегося автомобиля.
Ручной механический привод действует только на тормозные механизмы задних колес и предназначен для затормаживания стоящего автомобиля. При выходе из строя гидравлического привода ручной привод может быть использован и для затормаживания движущегося автомобиля.
Колесные тормозные механизмы барабанного типа с самоустанавливающимися колодками имеют устройства для автоматического поддержания постоянного зазора между рабочими поверхностями фрикционных накладок колодок и барабана.
Тормозной механизм переднего колеса: 1 — винт крепления; 2 — барабан; 3 — прижимная пружина; 4 — стойка колодки; 5 — щит; 6 — отражатель; 7 — стойка передней подвески; 8 — стяжная пружина; 9 — защитный колпак; 10 — цилиндр; 11 — поршень; 12 — манжета; 13 — кольцо автоматического устройства.
Рис. Поток жидкости в колесных цилиндрах передних тормозов при заполнении системы и прокачке: а — ввод и вывод осуществляются через один и тот же канал; б — ввод и вывод осуществляются через отдельные каналы.
Рис. Тормозной механизм заднего колеса: 1 — барабан; 2 — щит; 3 — клапан выпуска воздуха; 4 — стяжная пружина длинная; 5 — колодка; 6 — защитный чехол; 7 — цилиндр; 8 — поршень; 9 — манжета; 10 — кольцо автоматического устройства: 11 — отжимный рычаг; 12 — регулировочный винт; 13 — шайба; 14 — распорная втулка; 16 — пружинная шайба; 16 — гайка; 17 — распорная планка; 18 — прижимная пружина; 19 — стойка колодки; 20 — наконечник троса.
Регуляторы тормозных сил. Антиблокировочные и противобуксовочные системы
Сила сцепления колес автомобиля с дорогой по аналогии с силой трения пропорциональна вертикальной нагрузке, а коэффициентом пропорциональности является коэффициент сцепления шин с дорогой (коэффициент трения). Этот коэффициент от человека не зависит. Он определяется состоянием дороги и шин. Но чем выше сила сцепления колес с дорогой при торможении, тем будет меньше тормозной путь автомобиля. Мы знаем также, что при торможении на машину действует сила инерции. Следовательно, произойдет перераспределение вертикальных нагрузок на колеса. Поэтому при торможении на них возникнут разные тормозные силы. В этом случае говорят о неодинаковой эффективности торможения колес разных осей. Чтобы эффективность была одинаковой, требуется регулировать тормозные силы с помощью специальных устройств. Регуляторы используют и для повышения эффективности торможения, когда машина движется порожней (без груза), так как при этом сила сцепления будет иной, чем в груженом состоянии.
Существуют статические регуляторы (для двух состояний машины — груженой и порожней) и автоматические регуляторы тормозных сил. Последние находят применение, например, в автомобилях КамАЗ.
Автоматические устройства предназначены для регулирования тормозных сил на колесах задней тележки при изменение осевой нагрузки в процессе торможения. Регуляторы способствуют максимальному использованию сил сцепления колес с дорогой при торможении, что повышает устойчивость движения автомобилей.
Известны пневматические и гидравлические регуляторы. Регулирование тормозных сил достигается за счет снижения давления подводимого к задним тормозам воздуха или тормозной жидкости (в зависимости от типа тормозной системы) при изменении вертикальной нагрузки на ось. Поскольку регуляторы гидравлического типа предназначены для легковых автомобилей (ВАЗ), рассматривать их не будем.
Пневматический регулятор тормозных сил
Пневматический регулятор тормозных сил автомобиля КамАЗ, устанавливаемый на лонжероне 7 рамы автомобиля, состоит собственно из автоматического регулятора 2 рычага 3, регулируемой тяги 4, упругого элемента 5, компенсатора 7, связанного штангой 6 с балками 8 и 9 мостов автомобиля. Механизмы и имеющиеся крепления обеспечивают компенсацию перекосов тележки, возможных при торможении на неровных дорогах. Упругий элемент защищает регулятор от повреждений при вертикальных перемещениях мостов задней тележки, а также смягчает резкие толчки и уменьшает вибрацию.
Рис. Схема установки регулятора тормозных сил:
1 — лонжерон; 2 — регулятор тормозных сил; 3 — рычаг регулятора; 4 — тяга; 5 — упругий элемент; 6 — штанга; 7 — компенсатор; 8, 9 — балки мостов; I — положение рычага регулятора при наибольшей осевой нагрузке («груженый» автомобиль); II — положение рычага при наименьшей нагрузке («порожний» автомобиль)
Рассмотрим устройство и принцип действия пневматического регулятора тормозных сил.
Рис. Автоматический регулятор тормозных сил:
а — общий вид; б — конструкция; 1 — клапан; 2 — ступенчатый поршень; 3 — толкатель; 4 — рычаг; 5 — мембрана (диафрагма); 6 — шаровая пята; 7 — поршень; 8 — направляющая толкателя; 9 — вставки в корпусе; 10 — соединительная трубка; 11 — ребра поршня; I, II — полости; III — вывод в атмосферу
У груженого автомобиля рычаг 4 находится в крайнем верхнем положении. При торможении сжатый воздух поступает в полость 1. Поэтому поршень 2 переместится вниз, а по трубке 10 воздух из полости I поступит в нижнюю часть и будет оказывать давление на поршень 7 плунжерного типа, прижимая шаровую пяту 6 к толкателю 3. При перемещении поршня 2 вниз вместе с ним движется клапан 7, который посредством толкателя сначала отсоединит полость II от выхода в атмосферу, а затем отойдет от седла поршня 2. В результате полость I соединится с выходной полостью II, а сжатый воздух поступит через полость II к тормозным камерам колес.
Вставка в корпусе имеет наклонные ребра Я на которые опирается мембрана (диафрагма) 5 при верхнем положении поршня 2. Поршень 2 также имеет ребра 11. Чем ниже опустится рычаг и связанный с ним толкатель, тем ниже опустится и поршень 2. Следовательно, увеличится рабочая площадь мембраны 5, воздействующей на поршень 2.
Когда рычаг находится в верхнем положении (при полной осевой нагрузке), толкатель также расположен вверху. Для открытия клапана поршень 2 должен переместиться вниз. При небольшом его перемещении наклонные ребра 11 поршня 2 не выходят ниже ребер 9 вставки. При этом мембрана опирается только ца ребра вставки, и усилие от нее на поршень 2 не передается.
Когда рычаг находится в крайнем нижнем положении (наименьшая осевая нагрузка), поршень 2 должен максимально переместиться вниз для открытия клапана, поскольку толкатель также будет находиться в нижнем положении. В случае максимального перемещения поршня 2 вниз его наклонные ребра опустятся ниже ребер вставки. При этом активная площадь мембраны становится наибольшей. В результате в полости II установится давление воздуха, примерно равное 1/3 давления на входе в регулятор.
При растормаживании колес давление воздуха в полости 1 упадет, и поршень 2 переместится вверх. При этом клапан сядет на седло поршня 2, разобщая полости I и II, и оторвется от толкателя. В результате сжатый воздух из тормозных камер колес средней и задней осей через полость II и полый толкатель выходит в атмосферу, отгибая края резинового клапана. А все элементы регулятора возвращаются в исходное положение.
Рассмотренные регуляторы корректируют давление рабочего тела (воздуха) для обеспечения одновременной блокировки колес передней и задней осей. При этом происходит упреждающая блокировка колес передней оси. Однако такой способ торможения не является наиболее эффективным и безопасным с точки зрения сохранения устойчивости движения автомобиля при торможении. Кроме этого, происходит излишний износ шин.
АБС
Коэффициент сцепления колес с дорогой зависит от степени их скольжения, которая меняется в пределах от 0 (чистое качение колеса) до 100 % (полное буксование или скольжение при блокировке колес). Максимальные значения коэффициента сцепления порядка 10… 30 % (в зависимости от дорожной поверхности) будут при пробуксовке колес. Следовательно, при таком коэффициенте и степени скольжения колес можно обеспечить наибольшую эффективность и безопасность торможения. Именно это обеспечивают АБС.
Все современные АБС относятся к самонастраивающимся автоматическим системам. Они включают в себя:
- датчики угловой скорости колес
- электронно-решающий блок
- модуляторы давления
При работе АБС сигнал от датчиков угловой скорости вращения колес подается в электронно-решающий блок, в котором в соответствии с заданной программой формируются сигналы управления, поступающие на модулятор.
Рис. Схема пневматического модулятора АБС (а) и его характеристика (б):
1, 5, 6 — клапаны; 2, 3 — электромагниты; 4 — поршень; А—Д — полости; р — давление; t — время
На рисунке показана схема пневматического модулятора АБС и его характеристика (изменение во времени тормозной силы). Работа АБС сопровождается многоцикловым процессом автоматического растормаживания и торможения колес автомобиля. В каждом цикле имеются фазы автоматического растормаживания, «выдержки» и затормаживания (штриховые линии на рис. б) колес. Имеются АБС, в которых осуществляется двухфазовый цикл (фаза «выдержки» отсутствует). Работа АБС обеспечивает требуемые угловую скорость колеса и его скольжение, соответствующее максимальным сцепным характеристикам.
Работа пневматического модулятора
Рассмотрим подробно работу пневматического модулятора, выполненного на базе ускорительного клапана (рис. а). Сжатый воздух от тормозного крана поступает по магистрали в полость А и далее через полость Б проходит в полость В и давит на следящий поршень 4 вниз. Поршень перемещается вниз и упирается в клапан 5, отсоединяя полость Г от выхода в атмосферу. Дальнейшее перемещение поршня вниз приводит к открытию клапана 5.
В результате сжатый воздух начинает проходить из ресивера через полости Д и Г в тормозные камеры.
Если тормозящееся колесо начинает блокироваться, электронный блок посылает одновременно сигналы управления на электромагниты 2 и 3, которые закрывают клапан 1 и открывают клапан 6. При этом полости Б и В соединяется с атмосферой — происходит автоматическое растормаживание колеса. При некотором угловом ускорении колеса электронный блок снимает электрическое напряжение с электромагнита 3. В результате клапан 6 под действием пружины снова закрывается и наступает фаза выдержки.
Фаза повторного автоматического затормаживания колеса имеет место в том случае, когда колесо приобретает пороговое угловое ускорение. При этом электронный блок снимает электрическое напряжение, и с электромагнита 2, что позволяет клапану 1 открыться и соединить рабочую полость В с магистралью. Затем цикл повторяется.
Интегрированные системы активной безопасности (ИСАБ)
В настоящее время разработаны отечественные интегрированные системы активной безопасности (ИСАБ), образующие комплекс АБС и ПБС.
В отличие от АБС устанавливаемая в ИСАЕ противобуксовочная система обеспечивает требуемое движение колес не в тормозном (как при работе АБС), а в тяговом режиме. Дело в том, что при движении автомобиля, в том числе при маневрировании на дороге с различными сцепными свойствами участков поверхности, взаимодействующей с ведущим колесом, возникает разная пробуксовка. Это может привести к потере устойчивости движения, например, при разгоне автомобиля, когда к колесам может быть подведена излишняя тяга, неуравновешенная сцепными возможностями пары «колесо — дорога». Действие ПБС в отличие от АБС основано на том, что в случае появления пробуксовки ведущего колеса автомобиля система обеспечивает на этом колесе уменьшение тягового усилия. Тем самым предотвращается пробуксовка колес и повышается устойчивость движения автомобиля. Как правило, работа ПБС основана на уменьшении топливоподачи к двигателю, т.е. сводится к снижению тягового усилия на буксующем колесе (колесах).
Приводы управления тормозами
Тормозной привод — это совокупность устройств для передачи усилия, прикладываемого водителем к тормозным механизмам, и управления ими при торможении ТС. Находят применение в основном два вида тормозных приводов: гидравлический и пневматический. Рассмотрим каждый из них подробнее.
Гидравлический тормозной привод
Гидравлические тормозные приводы по виду используемой энергии могут быть трех типов:
- гидравлические прямого действия (тормозные механизмы приводятся в действие непосредственно водителем);
- гидравлические непрямого действия (тормозные механизмы приводятся в действие усилием на тормозную педаль и параллельно включенным усилителем);
- насосно-аккумуляторные (усилие на тормозные механизмы передается жидкостью, поступающей под давлением от насоса и гидроаккумуляторов).
Гидравлический привод, основанный на передаче усилия к тормозным механизмам посредством тормозной жидкости, используется в основном на автомобилях малой и средней грузоподъемности. Наиболее широкое распространение получили простой гидравлический привод и привод с гидровакуумным усилителем, применяемый на автомобилях ГАЗ.
Простой гидравлический привод состоит из:
- главного тормозного цилиндра, поршень которого связан через систему тяг с тормозной педалью
- трубопроводов
- колесных тормозных цилиндров 2
Усилие от педали, создаваемое водителем, передается через шток поршню главного тормозного цилиндра. В результате перемещения поршня в цилиндре создается давление жидкости до 8… 9 МПа, и жидкость вытесняется поршнем в трубопроводы, связанные с тормозными цилиндрами, размещенными в колесах автомобиля. Вследствие этого поршни цилиндров перемещаются и прижимают колодки к тормозным барабанам, осуществляя торможение колес. Усилие Р, разжимающее тормозные колодки, пропорционально давлению р жидкости в трубопроводе и диаметру колесного цилиндра d:
P = (Пd^2/4)*p
При давлении жидкости более 8 МПа диаметр колесного цилиндра оказывается недопустимо большим. Поэтому в каждом тормозном механизме (по условиям компоновки) устанавливают два параллельно подключенных к трубопроводу тормозных цилиндра, что позволяет повысить расчетное давление жидкости. Подобным образом выполнены, например, тормозные цилиндры автомобилей «Урал».
При отпускании педали тормозные колодки под действием стяжных пружин возвратят поршни колесных цилиндров в исходное положение. Поршни вытеснят жидкость по трубопроводам обратно в главный тормозной цилиндр.
Рис. Детали колесного тормозного цилиндра:
1 — пружина клапана; 2 — защитный колпак; 3 — колпак перепускного клапана; 4 — поршень; 5 — манжета поршня; 6 — держатель манжеты; 7 — колесный цилиндр; 8 — пружина; 9 — перепускной клапан
Для уменьшения усилия, затрачиваемого водителем на торможение, используются различные усилители, подключаемые к приводу управления тормозами параллельно тормозной педали. В основном применяются пневматические или вакуумные усилители. Гидроприводы с усилителем отличаются от комбинированных приводов тем, что у последних тормозная педаль связана тягой с краном управления, а необходимое усилие обеспечивается за счет потребления энергии от постороннего источника.
Принцип действия гидровакуумного усилителя тормозов
Рассмотрим принцип действия гидровакуумного усилителя тормозов автомобилей ГАЗ. Действие усилителя основано на использовании разрежения во впускном трубопроводе двигателя автомобиля для создания дополнительного давления жидкости в системе гидравлического привода. Гидровакуумный усилитель состоит из камеры 13, разделенной на полости А и Б диафрагмой 4, шток которой связан с пластиной 11; гидравлического цилиндра 9, механизма управления с клапанами 5 и 6, запорного обратного клапана 3, а также трубопроводов I и II.
При отпущенной тормозной педали 1 диафрагма 7 клапанного механизма занимает крайнее нижнее положение, а атмосферный клапан 5 под действием своей пружины прижат к седлу и отделяет полость А от атмосферы (связь через отверстие а). Полость А через отверстие б в тарелке диафрагмы сообщается с полостью Б. При работающем двигателе в обеих полостях создается разрежение, которое пропорционально разрежению во впускном трубопроводе (коллекторе) двигателя. В этом случае поршень 10 цилиндра 9 находится в крайнем левом положении, и шариковый клапан поршня открыт выступом пластины 11, упирающейся в шарик.
При нажатии на тормозную педаль рабочая жидкость из главного тормозного цилиндра 2 вытесняется по трубопроводу I и через клапанное отверстие в поршне поступает далее в трубопровод II — к колесным тормозным цилиндрам. Давление жидкости в цилиндре 9 передается на поршень 8 клапанного механизма, жестко соединенного с тарелкой диафрагмы 7. Эта диафрагма, преодолевая сопротивление своей пружины, начинает перемещаться вверх, и при некотором ее ходе отверстие в тарелке будет перекрыто торцевой частью вакуумного клапана 6. Полость А будет отключена от полости Б.
С дальнейшим нарастанием давления жидкости в трубопроводе I и при движении диафрагмы 7 вверх откроется атмосферный клапан 5, и в полость А камеры 13 усилителя будет поступать воздух под атмосферным давлением (через отверстие а). Под действием разности давлений в полостях А и Б вакуумной камеры усилителя диафрагма 4 прогнется и своим штоком переместит поршень 10 вправо, создавая таким образом дополнительное давление жидкости в трубопроводе II. Пластина 11 свободно повиснет на шпильке штока, связанного с диафрагмой 4, и шариковый клапан в поршне 10 закроется, прижимаясь к своему седлу пружиной.
При отпускании тормозной педали 1 давление в системе гидравлического привода уменьшится. Клапаны 5 и 6 переместятся вниз, воздушный клапан 5 закроется, а вакуумный 6 откроется, устанавливая в полостях А и Б камеры усилителя одинаковое разрежение. Пружина 12 переместит диафрагму 4 влево в исходное положение.
Рис. Схема гидровакуумного усилителя тормозов:
1 — тормозная педаль; 2 — главный тормозной цилиндр; 3 — запорный обратный клапан; 4, 7 — диафрагмы; 5, 6 — клапаны; 8, 10 — поршни; 9 — гидравлический цилиндр; 11 — пластина с выступом; 12 — пружина; 13 — камера усилителя; I, II — трубопроводы; а, б — отверстия; А, Б — полости
Запорный обратный клапан 3 отсоединит вакуумную полость камеры усилителя от коллектора двигателя, как только двигатель остановится. При длительном движении автомобиля с неработающим двигателем или в случае выхода из строя усилителя гидравлический привод сохраняет работоспособность, но усилие, требуемое от водителя на торможение, увеличится.
Привод с гидровакуумным усилителем обладает следящим действием, которое заключается в следующем. При остановке педали 1 в некотором положении, соответствующем заданному водителем тормозному усилию, поршень 10 некоторое время будет перемещаться в цилиндре 9 из-за продолжающегося до определенного момента прогиба диафрагмы 4. В результате давление жидкости под поршнем 8 снизится и, следовательно, диафрагма 7 опустится вниз до закрытия атмосферного клапана 5. В полостях А и Б камеры 13 установится постоянная разность давлений. Дальнейший прогиб диафрагмы 4 прекратится, а в гидросистеме будет поддерживаться постоянное давление жидкости, необходимое для обеспечения заданного тормозного усилия. Таким образом, заданный водителем тормозной момент на колесах будет постоянным в соответствии с положением педали 7, а нарастание тормозной силы будет происходить только с перемещением педали.
Перемещение диафрагмы 4 при работе усилителя создает на ее штоке усилие, действующее параллельно усилию со стороны водителя, увеличивая в результате тормозную силу на колесах автомобиля в 2,5 — 3,5 раза.
Эффективность действия тормозов изменяется в худшую сторону в случае наличия пузырьков воздуха в тормозной жидкости, а возможное тормозное усилие на колесах резко уменьшается. При наличии пузырьков воздуха необходимо прокачать гидросистему, удалив из нее воздушные пузырьки.
В качестве тормозной используют спиртокасторовую (при температуре не ниже -25 °С), этиленгликолевую (не ниже -60 °С) и другие жидкости. Однако этиленгликолевая тормозная жидкость обладает плохими смазочными свойствами и вызывает коррозию зеркала тормозных цилиндров, поэтому при сезонном обслуживании требуется обязательная промывка всех металлических деталей гидросистемы и смазка их касторовым маслом. Кроме того, эта тормозная жидкость так; же ядовита, как и антифризы. Наряду с хорошими смазочными свойствами, неагрессивностью по отношению к металлу и резине тормозные жидкости должны сохранять стабильную вязкость и подвижность при низких температурах, а также не испаряться при высоких температурах.
Рис. Главный тормозной цилиндр:
а — устройство; б — уплотнение задней части поршня; в — поршень; г — клапан; 1 — педаль; 2 — тяга; 3 — контргайка; 4 — резьбовая пробка; 5 — крышка; 6 — корпус; 7 — штуцер; 8 — пружина; 9 — поршень; 10 — защитный чехол; 11 — толкатель; 12 — оттяжная пружина; 13 — стопорное кольцо; 14 — упорная шайба; 15, 17 — манжеты; 16 — пластинчатый клапан;18 — пружина перепускного клапана; 19 — обратный клапан; 20 — перепускной клапан; А, Г — рабочие полости цилиндра; Б, В — перепускное и компенсационное отверстия
Регулировка одноконтурного гидравлического тормозного привода сводится к обеспечению необходимого зазора (1,5…2,5 мм) между штоком и поршнем главного тормозного цилиндра. Этот зазор необходим для того, чтобы при растормаживании колес поршень 9 можно было полностью отвести в нейтральное (левое) положение. Необходимый зазор проверяется величиной свободного хода тормозной педали, 1, равного 10… 15 мм. Регулировка осуществляется изменением длины тяги 2 путем отвинчивания контргайки 3 и относительным смещением толкателя 11, навинченного на тягу и зафиксированного контргайкой.
В случае утечки жидкости из тормозных колесных цилиндров или трубопроводов в правой полости главного тормозного цилиндра создается разрежение, и жидкость из его левой полости перетекает через отверстие А в правую полость, отжимая манжету 17. Левая полость в этом случае пополняется жидкостью, поступающей из резервуара корпуса 6 через отверстие Б. Избыток жидкости, возвращающейся в главный тормозной цилиндр из трубопроводов, связанных со штуцером 7, в процессе растормаживания тормозных механизмов поступает из правой полости в резервуар через компенсионное отверстие В.
Гидравлический тормозной привод прямого действия
Еще более просты по конструкции гидравлические тормозные приводы прямого действия. В таких приводах водитель осуществляет управление главным тормозным. цилиндром 6. При нажатии на тормозную педаль 5 перемещается поршень 4 главного (подпедального) тормозного цилиндра и под давлением жидкости в полости А поршень 3 перемещается влево, за счет чего создается давление в полости Б. В результате жидкость поступает по трубопроводам 2 и 7 к колесным гидроцилиндрам 1 и 8 — происходит затормаживание автомобиля.
Рис. Схема гидравлического тормозного привода прямого действия:
1, 8 — колесные тормозные цилиндры; 2, 7 — трубопроводы; 3, 4 — поршни; 5 — тормозная педаль; 6 — главный тормозной цилиндр; А, Б — полости
Один из вариантов гидравлического тормозного привода с пневматическим усилителем показан на рисунке. Усилитель состоит из следящего клапана 3 с подключенном к нему ресивером 4 и силового тормозного цилиндра 8 с поршнем (или диафрагмой). При воздействии на педаль через рычаг 2 усилие передается на шток цилиндра 8 и одновременно на клапан. Последний перемещается и соединяет рабочую полость А цилиндра 8 с ресивером. Вследствие этого поршни гидроцилиндра 7 перемещаются и нагнетают жидкость под давлением по трубопроводам 6 и 9 в колесные тормозные цилиндры 5 и 10. В таком усилителе обеспечивается следящее действие по силе и перемещению.
Рис. Гидравлический тормозной привод с пневматическим усилителем:
1 — тормозная педаль; 2 — рычаг; 3 — клапан; 4 — ресивер; 5, 10 — колесные тормозные цилиндры; 6, 9 — трубопроводы; 7 — грдроцилиндр; 8 — силовой тормозной цилиндр; А — рабочая полость
Пневматический тормозной привод
Пневматический тормозной привод применяется на автомобилях и автопоездах средней, большой и особо большой грузоподъемности. В пневматическом тормозном приводе для создания тормозной силы используется энергия сжатого под большим давлением воздуха, находящегося в специальных воздушных баллонах (ресиверах) и подаваемого туда от компрессора. При нажатии на тормозную педаль водитель воздействует на пневматический кран управления, связанный с ресиверами, и тормозными механизмами (камерами). В результате ресивер будет соединен с воздушным трубопроводом, по которому сжатый воздух подводится к тормозным камерам, связанным с разжимными кулаками колесных тормозов.
Пневматический привод обладает более высокой по сравнению с гидроприводом надежностью и простотой разводки пневмомагистралей к прицепным звеньям автопоезда. Однако пневматический привод имеет меньшее (в 10 —15 раз) быстродействие (время срабатывания привода составляет 0,6… 1,0 с у одиночного автомобиля и до 2,5 с — у автопоезда). Кроме того, ввиду относительно малого давления сжатого воздуха (до 0,8 МПа, что значительно ниже, чем в гидравлическом приводе) для обеспечения необходимых тормозных усилий требуются пневмоаппараты с большими габаритными размерами и массой.
В зависимости от способа соединения пневмосистем тягача и прицепного звена различают однопроводный привод (ЗИЛ), двухпроводный и комбинированный пневматические тормозные приводы (КамАЗ).
При однопроводном приводе соединение тормозной системы (контура) тягача с тормозной системой (контуром) прицепного звена осуществляется одним гибким шлангом 13. При нажатии на педаль 5 тормоза воздух из ресиверов 8 поступает в тормозные камеры 3 и 10 передних и задних колес. При возвращении педали 5 в исходное положение тормозной кран 6 прерывает связь ресиверов с тормозными камерами, воздух выходит в атмосферу, и тормозные камеры растормаживаются. Недостаток привода данного типа состоит в том, что при нарушении герметичности системы падает давление во всем приводе.
В отличие от однопроводного (одноконтурного) двухпроводный тормозной привод имеет два соединительных шланга:
- по одному из них при работе компрессора непрерывно подзаряжается сжатым воздухом ресивер (ресиверы) прицепа
- с помощью другого осуществляется управление интенсивностью торможения прицепа (прицепов).
Двух- или многоконтурные приводы более надежны.
Рис. Схема однопроводного пневматического тормозного привода:
а — пневмопривод тягача; б — пневмопривод прицепа; 1 — компрессор; 2 — регулятор давления; 3 — тормозные камеры передних колес; 4 — манометр; 5 — педаль; 6 — тормозной кран; 7 — сливные краны для удаления конденсата; 8 — ресиверы; 9 — предохранительный клапан; 10 — тормозные камеры задних колес; 11, 14 — разобщительные краны; 12 — соединительная головка; 13 — гибкий шланг; 15 — воздухораспределительный клапан
Независимые многоконтурные приводы обеспечивают работу тормозных механизмов отдельно передних и задних колес тягача, стояночного и запасного тормозов, торможение двигателем и т. п. Так, пневмосистема тормозного привода автомобилей КамАЗ имеет несколько контуров. В систему входят компрессор 9, регулятор давления 11, обеспечивающий поддержание требуемого давления в пневмосистеме, предохранитель 12 от замерзания, блок защитных клапанов, распределяющих воздух под давлением по пневмосистеме и ресиверы с четырьмя независимыми контурами (I — контур привода тормозных механизмов колес переднего моста, II — тормозных механизмов колес второго и третьего мостов и аварийного растормаживания стояночной тормозной системы, III — тормозных механизмов колес прицепа или полуприцепа; IV — механизмов вспомогательной тормозной системы и других потребителей сжатого воздуха).
В тормозную систему входят также пневмоцилиндр 23 привода заслонки вспомогательной тормозной системы, тормозные камеры 1 передних колес, комплект тормозных аппаратов для очистки воздуха в пневмосистеме, поддержания в ней постоянного давления и стабильной работы тормозной системы автомобиля и прицепа (полуприцепа). Механизмы вспомогательной тормозной системы с пневмоцилиндрами установлены в приемных трубах глушителя. Они служат для торможения автомобиля двигателем.
Имеется система контроля и поддержания постоянного давления воздуха в пневмосистеме (не ниже 0,5 МПа). Ее датчики связаны с сигнальными лампами, на щитке приборов в кабине водителя. Понижение давления в контуре дублируется звуковым сигналом.
Краны 19 слива конденсата и предохранитель 12 от замерзания обеспечивают обезвоживание воздуха в системе при низкой температуре окружающей среды. Этим обусловливается надежная работа пневмопривода.
При включении рабочей тормозной системы функционируют контуры I, II и частично — III. Поскольку все контуры независимые, при выходе из строя одного из них остальные сохраняют работоспособность.
При движении автомобиля КамАЗ с прицепом, имеющим однопроводную схему, магистраль управления тормозными механизмами подключается к соединительной головке 38, и сжатый воздух через разобщительный кран 37 под давлением 0,49…0,53 МПа поступает в пневматическую систему прицепа (магистраль Ж). В двухпроводном приводе питающая (3) и тормозная (Е) магистрали прицепа соединяются с головками 39. Разобщительные краны 37 этих головок открываются, и сжатый воздух поступает под давлением по питающей магистрали через защитный клапан в пневматическую систему прицепа. В тормозной магистрали при этом давление равно атмосферному.
Рис. Схема пневматического тормозного привода автомобиля КамАЗ:
I — тормозные камеры типа 24; 2 — кран управления стояночной тормозной системы; 3 — кран аварийного растормаживания стояночной тормозной системы; 4 — кран управления вспомогательной тормозной системой; 5 — манометр; 6 — контрольные лампы со звуковым сигнализатором; 7 — клапан контрольных выводов; 9 — компрессор; 10 — пневмоцилиндр привода рычага останова двигателя; 11 — регулятор давления; 12 — предохранитель от замерзания; 13 — двойной защитный клапан; 14 — датчик включения электромагнитного клапана тормозного механизма прицепа; 15 — аккумуляторные батареи; 16 — двухсекционный тормозной кран; 17 — тройной защитный клапан; 18 — датчик снижения давления в ресивере; 19 — краны слива конденсата; 20 — конденсаторный ресивер; 22 — ресиверы контура II; 23 — пневмоцилиндр привода заслонки вспомогательной тормозной системы; 24, 25 — ресиверы контуров I, III; 26 — тормозные камеры; 27 — датчик включения контрольной лампы стояночной тормозной системы; 28 — энергоаккумуляторы; 29 — ускорительный клапан; 30 — автоматический регулятор тормозных сил; 31 — клапан управления тормозными механизмами прицепа с двухпроводным приводом; 32 — двухмагистральный клапан; 33 — датчик включения сигнала торможения; 34 — клапан управления тормозными механизмами прицепа с однопроводным приводом; 35 — одинарный защитный клапан; 36 — задние фонари; 37 — разобщительные краны; 38, 39 — соедини-тельные головки типа «А» и типа «Палм»; А — контрольный вывод контура IV; Б, Д — клапаны контрольных выводов контура III; В — контрольный вывод контура I; Г — контрольный вывод контура II; Е — тормозная управляющая магистраль двухпроводного привода; Ж соединительная магистраль однопроводного привода; 3 — питающая магистраль двухпроводного привода
Пневмопривод используется также на легких гусеничных транспортерах-тягачах. В таких системах предусмотрена возможность различной комплектации в зависимости от назначения машины. Например, у тягачей имеется разобщительный кран 7 и соединительная головка 8 для подачи воздуха в пневмосистему прицепа. При этом вместо одинарного тормозного крана устанавливают двойной кран 6. На отдельных гусеничных транспортерах-тягачах в пневмосистему введен вспомогательный механизм 10 с пневмокамерой 9 для управления главным фрикционом. Предусматривается также пневмокран 3 для отбора (при необхо-димости) сжатого воздуха.
Тем не менее во всех модификациях транспортеров-тягачей применяется единая пневмосистема. Она, как и у колесных машин, содержит комдрессор 4, регулятор давления 5, ресиверы 15 и 16, от которых сжатый воздух подается к тормозному крану б, а далее через кран 17 — одновременно к жидкостному бачку 2 обмыва стекол кабины и тормозным камерам 13 и 14, управляющим тормозами. Для обмыва стекол используются специальные устройства 7, а для контроля за работой пневмосистемы — датчик 77 и манометр 12.
Рассмотрим устройство и принцип действия различных устройств пневматического тормозного привода.
Компрессор
Компрессор представляет собой двухцилиндровый поршневой насос для питания системы сжатым воздухом, обеспечивающий подачу 100…300 л/мин и давление воздуха в пневмосистеме 0,6… 0,8 МПа.
Рис. Пневмосистема легких гусеничных транспортеров-тягачей:
1 — устройства омывателей; 2 — жидкостный бачок; 3 — пневмокран; 4 — компрессор; 5 — регулятор давления; 6 — тормозной кран; 7 — разобщительный кран; 8 — соединительная головка; 9 — пневмокамера; 10 — пневмомеханизм; 11 — датчик; 12 — манометр; 13, 14 — тормозные камеры; 15, 16 — ресиверы; 17 — кран управления
Рис. Компрессор автомобиля ЗИЛ:
1 — шкив; 2 — блок цилиндров; 3 — шатун; 4 — поршень; 5 — головка цилиндров; 6 — нагнетательный пластинчатый клапан; 7 — крышка компрессора; 8 — отверстие смазочной магистрали; 9 — картер; 10— коленчатый вал; 11 — впускной клапан; 12 — шток плунжеров; 13 — пружина коромысла; 14 — плунжеры разгрузочного устройства; 15 — седло клапана; 16 — коромысло; 17 — направляющая пружина; 18 — воздушный канал разгрузочного устройства; А — камера подачи воздуха к баллонам; Б — жидкостная полость рубашки охлаждения; В — воздушная полость, связанная с воздухоочистителем
Компрессор имеет кривошипно-шатунный механизм, систему охлаждения и смазочную систему, подключенные к аналогичным системам двигателя. Привод коленчатого вала компрессора осуществляется от двигателя ТС при помощи шкивов клиноременной (ЗИЛ) или зубчатой («Урал») передачи.
При работе двигателя и вращении коленчатого вала компрессора его поршни совершают возвратно-поступательное движение в цилиндрах, попеременно сжимая поступающий туда через впускные клапаны воздух. Воздух нагнетается в цилиндры через пластинчатые клапаны 6 (по одному клапану на каждый цилиндр) под действием разрежения при движении поршня 4 вниз в одном из цилиндров. В другом цилиндре поршень движется вверх и сжимает находящийся в замкнутом объеме воздух. При определенном давлении открывается выпускной пластинчатый клапан, установленный в головке 5 цилиндров (на рисунке не показан), и воздух по трубопроводу поступает в систему пневматического привода тормозов.
Впускные клапаны открываются одновременно при помощи плунжеров 14, на которые действует под давлением воздух из ресиверов при достижении в них нормального давления. Для ограничения давления воздуха, создаваемого компрессором, в системе имеется регулятор давления, работающий совместно с разгрузочным устройством. Воздушный канал 18 соединен с регулятором давления, поэтому снизу на плунжеры действует давление воздуха, стремящееся приподнять их вверх. Этому препятствует коромысло 16 — пластина, прижатая центральной пружиной к верхней части обоих плунжеров.
Полость разгрузочного устройства между верхними частями плунжеров и впускными клапанами сообщается с воздушным фильтром двигателя. Если давление воздуха в системе превышает 0,73… 0,77 МПа, то регулятор подает сжатый воздух по воздушному каналу под плунжеры. Плунжеры, поднимаясь одновременно, открывают своими толкателями впускные клапаны, преодолевая сопротивление их пружин, прижимающих клапаны к седлу. При одновременном открытии впускных клапанов компрессор переводится в режим холостого хода, поскольку попадающий в его цилиндры воздух при движении поршней перекачивается из одного цилиндра в другой. Выпускные клапаны при этом закрыты под действием своих пружин, а компрессор не сжимает воздух и не подает его в систему.
Регулятор давления
Регулятор давления предназначен для автоматического поддержания необходимого давления воздуха в системе. Конструктивно регуляторы давления различных автомобилей отличаются друг от друга, но принцип их действия одинаков. В корпусе 13 регулятора имеется клапан, включающий в себя шарики 9 и 10, шток 5 клапана и пружину 3, распирающую центрирующие шарики 2 и 4. Если в ресиверах давления воздуха, поступающего от компрессора, превышает 0,73…0,77 МПа, то шарики 9 и 10 поднимаются вверх, открывая проход для воздуха из ресиверов через специальный канал (на рисунке не показан) в корпусе 13 в подплунжерное пространство разгрузочного устройства компрессора. С помощью регулировочного колпака 1 (ввинчивая его или завинчивая на резьбу штуцера 7) регулируют максимальное давление в системе, поскольку колпак через шарики 2 и 4, пружину и шток воздействует на два шариковых клапана — выпускной и впускной. При снижении давления воздуха в системе примерно до 0,6 МПа компрессор включается в работу, клапан регулятора закрывается, а подплунжерное пространство разгрузочного устройства компрессора через канал в корпусе 13 и штуцере 7 (при опущенном вниз выпускном шариковом клапане) соединяется с атмосферой.
Рис. Регулятор давления:
1 — регулировочный колпак; 2, 4 — центрирующие шарики; 3 — пружина; 5 — шток клапана; 6 — гайка; 7 — штуцер; 8 — кожух; 9, 10 — шарики клапанов; 11 — крышка фильтра; 12 — фильтр; 13 — корпус регулятора
Ресиверы
Ресиверы выполнены в виде стальных баллонов и предназначены для обеспечения запаса сжатого воздуха, необходимого для работы пневматического тормозного привода. Ресиверы соединены с трубопроводами при помощи ввернутых в них штуцеров. Для удаления конденсата в ресиверах имеются сливные краны. На тягаче и прицепе устанавливаются, как правило, несколько ресиверов.
Предохранительный клапан
Предохранительный клапан, устанавливаемый на ресивере, служит для предохранения пневмосистемы от избыточного давления воздуха в случае выхода из строя регулятора давления. Как правило, это шариковый клапан, поджимаемый сильной пружиной к седлу. Для регулирования усилия прижатия шарика на заданное давление срабатывания имеется винтовое регулировочное устройство. Клапан регулируют на давление воздуха 0,90…0,95 МПа. При превышении этого давления шариковый клапан отходит от седла, сжимая пружину, а воздух из системы через проточку в клапане выпускается в атмосферу.
Тормозная камера
Тормозная камера предназначена для передачи давления сжатого воздуха на валик разжимного кулака.
Различают фланцевые и бесфланцевые тормозные камеры. Во фланцевых камерах диафрагма зажата между фланцами корпуса и крышки. В настоящее время на отечественных автомобилях и автопоездах широко применяются бесфланцевые тормозные камеры и камеры с энергоаккумуляторами.
Камера (рис. а) имеет корпус 8 и крышку 2. Между ними зажата диафрагма (мембрана) Jиз прорезиненной ткани. Корпус камеры кронштейнами крепится к балке мостов вблизи колес автомобиля. Центр диафрагмы скреплен со штоком, противоположная сторона которого шарнирно (с помощью вилки 10) соединена с рычагом привода тормозного механизма. Возвратная пружина 5 камеры перемещает диафрагму в исходное положение при растормаживании колес. Диаметр диафрагмы выбирается из расчета создания необходимой тормозной силы при заданном давлении воздуха в пневмосистеме. На тяжелых машинах этот диаметр весьма значителен (около 300 мм). Сжатый воздух из системы поступает в тормозную камеру по гибкому шлангу, прогибая эластичную диафрагму и перемещая ее шток. Камера входит в контур II рабочей тормозной системы, а энергоаккумулятор — в контур III привода стояночной и запасной систем.
Тормозной кран
Тормозной кран предназначен для управления подачей сжатого воздуха, поступающего из ресиверов к исполнительным механизмам тормозной системы машины.
По принципу действия тормозные краны бывают прямого и обратного действия, а также комбинированные. В кранах прямого действия при увеличении управляющего усилия, прикладываемого к нему (процесс торможения), давление в полости крана возрастает, а в кранах обратного действия — уменьшается.
Рис. Тормозные камеры автомобилей семейства КамАЗ:
а — типа 24; б — типа 20 с энергоаккумулятором; 1 — штуцер; 2 — крышка; 3 — диафрагма (мембрана); 4 — опорный диск (тарелка); 5 — возвратная пружина; 6 — стяжной хомут; 7— шток; 8 — корпус камеры; 9 — контргайка; 10 — вилка разжимного устройства тормозного механизма; 11 — подпятник; 12 — уплотнительное кольцо; 13 — толкатель; 14 — поршень; 15 — уплотнение поршня; 16 — цилиндр энергоаккумулятора; 17 — силовая пружина; 18 — болт механизма аварийного растормаживания; 19 — упорная гайка; 20 — патрубок цилиндра; 21 — дренажная трубка; 22 — упорный подшипник; 23 — фланец; 24 — патрубок тормозной камеры
Тормозные краны по числу обслуживаемых ими автономных контуров привода подразделяются на одно-, двух-, трех- и многосекционные. Секции могут быть расположены последовательно, параллельно или комбинированно.
Односекционные краны используются в одноконтурных тормозных приводах автомобилей и автопоездов, а также многоконтурных для управления отдельными контурами. Двухсекционные краны предназначены для управления двухконтурным приводом одиночного автомобиля. Тормозные краны имеют следящий механизм, обеспечивающий изменение давления воздуха в его полости (выходного давления) в зависимости от входного воздействия (усилия, перемещения, давления). Этот механизм состоит из упругого элемента (пружины или резиновой втулки) и чувствительного элемента (поршня или диафрагмы).
Управление тормозным краном может быть непосредственным и дистанционным. Оно осуществляется механически с помощью рычагов и тяг, а также гидроприводом.
Комбинированный тормозной кран применяется на тягачах, предназначенных для работы с прицепами или полуприцепами. Подобный кран состоит из двух секций — верхней и нижней. Верхняя секция предназначена для управления тормозными механизмами прицепа (полуприцепа), а нижняя — тормозными механизмами тягача.
Тормозной кран приводится в действие от педали водителя посредством тяги, связанной с большим приводным рычагом 4. При нажатии на тормозную педаль кран перепускает сжатый воздух из ресиверов в колесные тормозные камеры, управляющие поворотом разжимного кулака тормозных колодок.
Правые части верхней и нижней секций имеют одинаковую конструкцию. Полости А и Б каналами сообщаются с атмосферой, отверстие I связано с пневмомагистралью прицепа, а отверстие II — с колесными тормозными камерами тягача. Через отверстия III и IV штуцеров 16 крана к нему подводится сжатый воздух по трубопроводам из ресиверов тягача.
При отпущенной тормозной педали верхняя часть приводного рычага 4 находится в правом положении и касается упорного болта, пружина 5 посредством специальной тарелки удерживает шток 7 верхней секции в крайнем правом положении и прижимает седло 10 к выпускному клапану, закрывая его. Впускной клапан 75 открыт, и воздух из ресиверов тягача поступает в пневмомагистраль прицепа, проходит через воздухораспределитель прицепа и далее в его ресивер. Тормозные камеры колес прицепа через воздухораспределитель связаны с атмосферой. Впускной клапан нижней секции закрыт; при помощи своей пружины он оттянут влево и прижат к седлу.
Рис. Комбинированный тормозной кран:
1 — тяга привода; 2 — защитный чехол; 3 — крышка; 4 — приводной рычаг; 5 — пружина; 6 — направляющая втулка; 7 — шток; 8 — корпус; 9 — мембрана с направляющим стаканом; 10 — седло выпускного клапана; 11 — возвратная пружина мембраны; 12 — выпускной клапан; 13 — возвратная пружина двойного клапана; 14 — седло впускного клапана; 15 — впускной клапан; 16 — пробка (штуцер); 17 — рычаг ручного привода; 18 — клапанная крышка; 19 — клапан бокового отверстия выпуска сжатого воздуха; 20 — корпус датчика сигнала торможения; 21 — канал для подвода сжатого воздуха к мембране включения светового сигнала торможения; 22 — уравновешивающая пружина секции, управляющей тормозами автомобиля; 23 — стакан уравновешивающей пружины; 24 — упор рычага ручного привода; 25 — фигурный рычаг; 26 — корпус рычагов; 27 — ограничитель хода штока; 28 — кулак рычага ручного привода; I — отверстие для присоединения трубопровода к магистрали прицепа; II — отверстие для присоединения трубопровода к тормозным камерам автомобиля; III, IV — отверстия для присоединения трубопровода к воздушным баллонам; V — отверстие для выхода сжатого воздуха в атмосферу; А, Б — полости связи с атмосферой
При нажатии на педаль верхний конец приводного рычага перемещается влево и тянет за собой шток, сжимая пружину 5 и позволяя подвижному седлу 10, связанному с эластичной мембраной 9, под действием пружины 11 также передвинуться влево. Пружина 13 закрывает впускной клапан 75, и при некотором ходе седла 10 между ним и выпускным 12 появится кольцевой зазор, поэтому сжатый воздух из магистрали прицепа через полость А выходит в атмосферу. Давление воздуха в магистрали, связывающей прицеп с тягачом, будет равно атмосферному.
При дальнейшем перемещении приводной рычаг нижним концом передвинет фигурный (малый) рычаг 25 вправо. В результате стакан 23 переместит седло нижней секции тягача также вправо, прижав его к клапану 12. При продолжающемся перемещении седла вправо откроется правый клапан, а выпускной клапан 12 будет закрыт. Сжатый воздух из ресиверов тягача поступит в тормозные камеры колес тягача, затормаживая последние.
Тормозной кран обладает следящим действием, заключающемся в следующем: сила разжатия тормозных колодок пропорциональна усилию, прикладываемому к тормозной педали. Это достигается вследствие того, что при нажатии на педаль сжимается уравновешивающая пружина 22, которая при перемещении вместе с седлом вправо прогибает соответствующую мембрану и открывает впускной клапан нижней секции. Сжатый воздух, поступающий по отверстию IV, пройдя через клапан, действует на его мембрану, стремясь переместить ее влево (т. е. в противоположном направлении), что приводит к закрытию впускного клапана под действием его пружины. В зависимости от силы, с которой водитель воздействует на тормозную педаль, установится соответствующее давление воздуха, в результате чего будет обеспечено торможение с определенной интенсивностью, пропорциональной перемещению тормозной педали.
При полном нажатии на педаль пружина 22 сожмется настолько, что впускной клапан нижней секции будет открыт даже при давлении воздуха, равном давлению сжатого воздуха в ресиверах тягача.
При отпускании педали мембрана за счет возвратной пружины нижней секции отводится влево, т. е. в исходное положение, открывается выпускной клапан 12, и воздух из тормозных камер тягача через отверстие в седле и полость Б тормозного крана отводится в атмосферу.
Устойчивость автопоезда при торможении достигается за счет того, что колеса прицепа тормозятся на 0,2…0,3 с раньше, чем колеса тягача. Это обеспечивается кинематикой перемещений рычагов 4 и 25, нежестко связанных друг с другом при помощи оси.
При использовании стояночного тормоза кулак 28 рычага ручного тормоза надавит на выступ штока 7, перемещая его влево, и включит в работу верхнюю секцию тормозного крана, затормозив колеса прицепа. Свободный ход рычага 4 составляет 1…2 мм. Рабочий ход штока 7, равный 5 мм, можно отрегулировать упорными болтами.
Двухсекционный тормозной кран многоосных тягачей имеет две независимые секции, расположенные последовательно, питающиеся от раздельных контуров и управляющие тормозами первого и третьего мостов (верхняя секция), а также второго и четвертого мостов (нижняя секция).
Кран включает в себя сборный корпус, рычаг 5, клапаны 2 и 13 верхней и нижней секций, верхний 3, большой ускорительный 1 и малый 10 поршни, уравновешивающий упругий элемент 4, пружины клапанов и поршней, а также уплотнительные кольца.
Выводы III и IV корпуса соединены с ресиверами первого и второго контуров соответственно, а выводы I и II — с главными тормозными цилиндрами.
В исходном положении (педаль тормоза отпущена) тормозной кран через отверстие 15 в выпускном окце соединяет с атмосферой через выводы I и II пневматические полости главного тормозного цилиндра. При этом верхний поршень 3 под действием пружины 8 занимает крайнее верхнее положение, выпускное окно клапана открыто, и вывод II соединен с атмосферой. Верхний клапан 2 под действием его пружины прижат к седлу верхнего корпуса, а вывод III разобщен с выводом II. Большой поршень 1 и малый следящий поршень 10 под действием пружины 11 находятся в крайнем верхнем положении, выпускное окно нижнего клапана 13 открыто, а вывод I связан с атмосферой. Нижний клапан пружиной прижат к седлу нижнего корпуса, и вывод IV разобщен с выводом I.
При нажатии на педаль тормоза рычаг 5 поворачивается на своей оси и роликом надавливает на толкатель 6, который через тарелку сжимает упругий элемент 4 и перемещает верхний поршень 3 вниз. Перемещаясь, он сжимает пружину 8, закрывает выпускное окно, разобщая вывод II с атмосферой, и отрывает клапан 2 от седла. Сжатый воздух, подводимый к выводу III, через открытый клапан поступает к выводу II и далее к главному тормозному цилиндру первого и третьего мостов до тех пор, пока сила нажатия на рычаг не уравновесится давлением воздуха на поршень 3 (следящее действие). При этом сжатый воздух через отверстие в выводе II подается в надпоршневое пространство поршня 7.
Рис. Двухсекционный тормозной кран:
1 — ускорительный поршень; 2, 13 — клапаны верхней и нижней секции; 3, 10 — следящие поршни; 4 — упругий элемент; 5 — рычаг; 6 — толкатель; 7 — упорная шпилька; 8, 11 — пружины следящих поршней; 9, 12 — седла клапанов; 14 — направляющий стержень; 15 — отверстие; I—IV — выводы в атмосферу
Поршень, имеющий большую поверхность, перемещается вниз при невысоком давлении в надпоршневом пространстве и перемещает малый поршень 10, сжимая при этом пружину 11. Малый поршень закрывает выпускное окно, разобщая вывод I с атмосферой, и отрывает клапан 13 от седла. Сжатый воздух, подводимый к выводу IV через открытый клапан, поступает к выводу I и далее к главному тормозному цилиндру второго и четвертого мостов.
Сжатый воздух, находящийся в пространстве под поршнями 10 и 7, уравновешивает силу, действующую па поршень 1 сверху, таким образом, что в выводе I устанавливается давление, соответствующее усилию нажатия на рычаг (следящее действие). Размеры поршней и характеристики пружины 11 подобраны так, что давление в выводах I и II в зависимости от усилия на рычаге практически одинаково. При промежуточных положениях рычага нижняя секция управляется пневматически.
При крайнем положении рычага или в случае повреждения контура верхней секции верхний поршень 3, перемещаясь вниз, воздействует на направляющий стержень 14 малого поршня 10, перемещая его. Малый поршень, в свою очередь, закрывает выпускное окно и открывает клапан 13.
При снятии усилия с рычага верхний поршень под действием пружины 8 перемещается вверх, клапан 2 под действием пружины прижимается к седлу, а поршень, продолжая перемещаться, открывает выпускное окно и соединяет вывод II с атмосферой. Давление в надпоршневом пространстве большого поршня 1 падает, поршни 1 и 10 вследствие разности давлений и воздействия пружины 11 перемещаются вверх, клапан 13 прижимается к седлу, выпускное окно открывается, и вывод I соединяется с атмосферой.
При механическом воздействии на малый поршень 10 оттормаживание нижней секции происходит при снятии усилия на стержне 14 аналогичным образом. Механический привод тормозного крана предназначен для передачи усилия от ноги водителя на рычаг тормозного крана.
Воздухораспределитель (воздухораспределительный клапан) устанавливаемый на прицепе (полуприцепе), предназначен для управления его тормозными механизмами.
В корпусе воздухораспределителя имеется перегородка 4, разделяющая его на две полости — А и Б. На штоке 10, перемещающемся в направляющих, укреплены поршни 7 и 9. В нижней части корпуса имеется пластинчатый клапан 72, поджимаемый пружиной 11 к своему седлу (вверх).
При нажатии на тормозную педаль и работе тормозного крана в магистрали, соединяющей воздухораспределитель с верхней секцией крана, находящегося на тягаче, установится атмосферное давление. Под действием пружины 6 шариковый клапан 5 закроется и отсоединит полость Б воздухораспределителя от магистрали тягача. Под действием давления сжатого воздуха из ресивера 7 поршень переместится вниз вместе со штоком, сжав пружину 8. Шток открывает пластинчатый клапан 11, позволяя воздуху из ресивера 7 проходить к тормозным камерам 2 прицепа, затормаживая его колеса. Это же произойдет и в случае обрыва магистрали, соединяющей тягач с прицепом. В зависимости от силы нажатия на тормозную педаль в магистрали, соединяющей тягач и воздухораспределитель, будет определенное падение давления воздуха, что повлечет торможение колес прицепа с соответствующей интенсивностью.
Рис. Схема работы воздухораспределителя:
1 — ресивер прицепа; 2 — тормозная камера прицепа; 3 — фильтр; 4 — перегородка; 5 — шариковый клапан; 6 — пружина обратного клапана; 7, 9 — поршни; 8, 11 — пружины; 10 — шток; 12 — пластинчатый клапан; А, Б — полости
При отпускании тормозной педали давление воздуха из пневмосистемы тягача передается к воздухораспределителю прицепа. При этом открывается шариковый клапан 5, и воздух поступает из магистрали тягача в полость Б воздухораспределителя. Под давлением воздуха поршень 7 стремится опуститься вниз. Однако вследствие равенства давления воздуха с обеих сторон поршня 7 пружина 8 заставляет его переместиться вверх вместе со штоком 10. Клапан 11 закрывается, а тормозные камеры 2 через осевое отверстие в штоке 10 и фильтр 3 соединяются с атмосферой. Колеса прицепа растормаживаются, а его ресивер 1 вновь пополняется сжатым воздухом из пневмосистемы тягача.
При однопроводном приводе (рис. а) соединительная магистраль присоединяется к выводу 4. Сжатый воздух из соединительной магистрали поступает в полость А, отгибая края манжеты 1 поршня 2, и далее через вывод 10 направляется в ресивер прицепа. Тормозные камеры прицепа, подключенные к выводу 17, соединяются с атмосферой через открытый выпускной клапан б, полую втулку 7 и вывод 9 в атмосферу. Следящее действие осуществляется малым поршнем 5.
В случае двухпроводного привода (рис. б) питающая магистраль присоединяется к выводу 4, управляющая — к выводу 14, а ресивер и тормозные камеры прицепа — соответственно к выводам 10 и 17. При торможении сжатый воздух поступает через вывод 14 в полость Б и, воздействуя на большой поршень 15 следящего устройства, перемещает его вместе с малым следящим поршнем 5 вниз. При этом закрывается выпускной клапан 6 и открывается впускной преодолевая усилие пружины 16. Сжатый воздух через открытый впускной клапан из ресивера поступает в тормозные камеры. Следящее действие осуществляется поршнем 15.
Воздухораспределитель имеет уравнительный клапан 12. При однопроводном приводе давление, подводимое к выводу 4, не превышает 0,52 МПа, и клапан не работает. В двухпроводном приводе при подаче воздуха под давлением 0,7 МПа клапан открывается и давления над поршнем 2 (полость А) и под ним выравниваются; В случае аварийного падения давления в питающей магистрали до значений ниже 0,53 МПа клапан закрывается, а давление воздуха в ресивере и полости А не изменяется. При дальнейшем падении давления в питающей магистрали воздухораспределительный клапан тормозит прицеп, как в случае применения однопроводной схемы.
Рис. Конструкция воздухораспределителя:
а — однопроводный привод; б — двухпроводный привод; 1 — манжета; 2 — поршень; 3 — шток; 4 — вывод соединительной магистрали; 5 — малый следящий поршень; 6 — выпускной клапан; 7 — полая втулка; 8 — впускной клапан; 9 — вывод в атмосферу; 10 — вывод связи с ресивером прицепа; 11, 16 — пружины; 12 — уравнительный клапан; 13 — соединительный вывод; 14 — вывод; 15 — поршень следящего устройства; 17 — вывод тормозных камер; А, Б — полости
Пружинные энергоаккумуляторы используются для торможения колес задней тележки автомобилей КамАЗ в качестве стояночной тормозной системы. Энергоаккумуляторы объединены с тормозными камерами колес тележки (см. рис. б).
К нижней части корпуса энергоаккумулятора прикрепляется тормозная камера. Верхняя и нижняя полости корпуса энергоаккумулятора связаны друг с другом при помощи дренажной трубки 27. Кроме того, полость тормозной камеры соединена с атмосферой. Герметизация полостей корпуса обеспечивается уплотнительным кольцом 12 полого толкателя 13, который может перемещаться вдоль вертикальной оси корпуса. Толкатель не связан с диафрагмой (мембраной) 3 тормозной камеры.
Затормаживание колес тягача с помощью стояночной и запасной тормозных систем происходит при выпуске из энергоаккумулятора сжатого воздуха. Это осуществляет водитель специальным ручным тормозным краном. При работающем компрессоре воздух из пневмосистемы через штуцер 7 постоянно подается в полость энергоаккумулятора, а поршень 14 отжимается вверх, причем полый толкатель своим днищем не соприкасается с диафрагмой тормозной камеры колеса. Для включения стояночного тормоза воздух выпускают из полости под поршнем. С помощью силовой пружины 17 поршень перемещается вниз, заставляя двигаться вниз и толкатель, который, упираясь в диафрагму, заставляет перемещаться шток 7 и приводит в действие тормозной механизм каждого колеса задней тележки тягача.
Для выключения тормозных механизмов тележки тягача перед началом движения необходимо выключить стояночные колесные тормоза. Поэтому в полость под поршнем следует подать сжатый воздух из пневмосистемы.
Для приведения в действие запасной тормозной системы (в случае отказа основной рабочей системы тормозов) пользуются ручным краном. При этом воздух частично выпускается из энергоаккумулятора. Количество воздуха, выпускаемого из полости под поршнем, и, следовательно, интенсивность торможения зависят от приемов управления рукояткой ручного тормозного крана. Можно осуществить и механическое растормаживание колес, для чего необходимо, вывинчивая болт 18, переместить поршень вместе с толкателем вверх. Силовая пружина сжимается, а возвратная пружина 5, разжимаясь, заставляет перемещаться вверх шток, растормаживая тормозной механизм.
Ручной тормозной кран служит для управления пружинными энергоаккумуляторами. Это клапан обратного действия, работающий при выпуске сжатого воздуха.
Ускорительный клапан связан с ручным тормозным краном и служит для уменьшения времени срабатывания привода стояночной и запасной тормозных систем. Ускорение процесса срабатывания указанных систем осуществляется за счет сокращения длины магистрали впуска сжатого воздуха в пружинные энергоаккумуляторы и выпуска из них воздуха в атмосферу.
Предохранительное устройство (предохранитель) от замерзания применяется в пневмосистема автомобилей КамАЗ, КЗКТ и др. Оно предназначено для защиты от замерзания конденсата в трубопроводах и приборах тормозного привода в зимнее время. Обычно используются предохранители испарительного типа, в которых рабочей жидкостью является этиловый спирт. Предохранитель может быть подключен к пневмосистеме (положение «Зима», температура ниже 5 °С) или отключен от нее (положение «Лето», температура выше 5 °С).
При включенном состоянии предохранителя сжатый воздух от компрессора поступает в специальный воздушный канал корпуса и уносит частицы спирта в пневмосистему. Одновременно часть поступающего в предохранитель сжатого воздуха, протекая над поверхностью спирта, насыщается его парами. Спирт, поглощая из воздуха влагу, превращает ее в конденсат с довольно низкой температурой замерзания.
Защитные клапаны предназначены для защиты пневматической тормозной системы автомобиля (КамАЗ) при возникновении в ней неисправностей (разгерметизации). В системе устанавливают тройной и двойной защитные клапаны.
Первый клапан предназначен для разделения магистрали от компрессора на три автономных контура: два основных (привод колес передней оси и задней тележки) и один дополнительный (привод аварийного растормаживания тормозов стояночной системы). В случае выхода из строя одного из контуров давление во внутренней полости этого контура уменьшится, а соответствующее клапанное устройство (за счет специальной пружины) перекроет неисправную магистраль. При этом исправный контур будет работать, а в негерметичный контур воздух поступать не будет. Двойной клапан служит для разделения магистрали от компрессора на два автономных контура (вспомогательная и стояночная тормозные системы), а также для автоматического отключения поврежденного контура с целью сохранения давления воздуха в исправном контуре системы.
Защитные клапаны отрегулированы таким образом, чтобы при работе компрессора сначала заполнялись ресиверы контура привода тормозов стояночной и запасной тормозных систем, а затем ресиверы остальных тормозных систем автомобиля.
Для повышения эффективности торможения используются регуляторы тормозных сил, АБС и противобуксовочные системы (ПБС).
Видео: Тормозная система
Вспомогательная тормозная система
Эта система, обеспечивающая торможение двигателем, применяется на затяжных спусках при движении ТС с постоянной скоростью с целью разгрузки тормозов рабочей тормозной системы, которые при частом пользовании могут перегреваться. Вспомогательная тормозная система в виде моторного тормоза-замедлителя имеет заслонки в выпускных трубопроводах двигателя. За счет дросселирования продуктов сгорания в цилиндрах двигателя создается сопротивление вращению коленчатого вала. Например, вспомогательный тормоз автомобилей «Урал» с дизелем состоит из привода и двух исполнительных механизмов, установленных в трубопроводах системы выпуска отработавших газов из цилиндров.
Механизм вспомогательного тормоза включает в себя корпус 7 с фланцем для крепления к выпускному трубопроводу, заслонку 3, вал 4 и рычаг поворотный 2 вала заслонки. Когда тормоз не включен, заслонка расположена вдоль потока отработавших газов по оси приемных труб глушителя.
Привод управления вспомогательным тормозом выполнен пневматическим. Он состоит из крана управления, закрепленного на панели кабины, пневмоцилиндров и кнопки управления, расположенной около педали сцепления. В системе имеются три пневмоцилиндра, два из которых предназначены для управления заслонками выпускных трубопроводов, а один — для отключения подачи топлива.
Рис. Механизм вспомогательного тормоза:
1 — корпус; 2 — поворотный рычаг вала заслонки; 3 — заслонка; 4 — вал заслонки
При нажатии на кнопку крана управления сжатый воздух из пневмосистемы подается к двум пневмоцилиндрам, поршни которых перемещаются и при помощи штоков устанавливают заслонки 3 механизмов перпендикулярно потоку отработавших газов, создавая сопротивление их выпуску. Одновременно воздух подается от крана к пневмоцилиндру, расположенному на крышке топливного насоса высокого давления. Подача топлива прекращается, и двигатель работает в тормозном режиме, т.е. при работе вспомогательного тормоза цилиндры двигателя переключаются на работу в режиме компрессора: топливо не подается, а воздух поступает и сжимается при перемещении поршней. Двигатель поглощает часть энергии ТС, затрачивая ее на сжатие воздуха в цилиндрах. Воздух, поступающий в цилиндры, сжимается, а затем под действием поршней выталкивается в выпускной трубопровод, давление в котором в результате закрытия заслонок резко возрастает. Создаваемое противодавление не должно превышать 0,3 МПа, иначе сила, действующая на выпускные клапаны цилиндров двигателя, превысит усилие их прижатия к своим гнездам. Поскольку при работе тормоза подача топлива прекращается, его сгорания не происходит, а поршни перемещаются в цилиндрах под воздействием вращения колес автомобиля и передачи этого вращения через детали трансмиссии коленчатому валу.
Стояночная тормозная система с механическим приводом
Стояночная тормозная система предназначена для затормаживания автомобиля на стоянках и удержания груженого автомобиля на уклоне до 25 %. Она может применяться в качестве запасной в случае отказа рабочей тормозной системы. При этом усилие на ручном рычаге тормоза в зависимости от категории транспортного средства должно составлять 400 Н (категория М1) и 600 Н (категории М2, M3, N1—N3), а на ножном — соответственно 500 и 700 Н.
В зависимости от места установки тормоза стояночные системы подразделяются на трансмиссионные и колесные. На полноприводных автомобилях (ЗИЛ, «Урал» и др.) стояночный тормоз, как правило, установлен на валу раздаточной коробки и имеет механический привод из кабины водителя.
Рис. Схема стояночного тормоза с механическим приводом:
1, 10, 15, 18, 20 — тяги; 2 — полый рычаг управления; 3, 6, 11, 13, 17, 19, 21 — рычаги; 4 — фиксатор; 5 — неподвижный зубчатый сектор; 7, 16 — кронштейны; 8 — болт; 9 — валик; 12 — скоба; 14 — пружина скобы; 22 — разжимной кулак; 23 — тормозная колодка; 24 — стяжные пружины; 25 — болт крепления регулировочного рычага
Тормозной щит стояночного тормоза колодочного типа прикреплен к крышке подшипника вала привода заднего моста, а тормозной барабан установлен на фланце этого вала. Механический привод представляет собой систему тяг и рычагов, соединяющих ножную педаль или рычаг управления с тормозным механизмом.
Как правило, рычаг управления 2 тормозным механизмом выполнен полым. Внутри его проходит тяга 7, связанная с фиксатором 4 зубчатого сектора 5. При повороте рычага управления посредством системы тяг и рычагов приводится в действие рычаг 21 разжимного кулака 22, который поворачивает тормозные колодки 23, прижимая их к поверхности тормозного барабана. В расторможенном состоянии колодки прижаты стяжными пружинами 24 к разжимному кулаку.
Для регулировки зазоров между тормозным барабаном и колодками рычаг управления перемещают в крайнее нижнее положение. В соединении скобы 12 с рычагом 13 тормозного крана устанавливают зазор до 2 мм, изменяя длину тяги 75, связанную с рычагом 17 привода. Зазоры регулируют изменением длины тяги 18 с помощью винтового соединения и перестановкой рычага 21 на шлицах разжимного кулака. Зазор, как правило, должен составлять 0,3 …0,6 мм.
Тяги и рычаги связаны между собой при помощи пальцев и зашплинтованы. Рычаг б установлен на валике 9 на шпонке. Разжимной кулак, его втулку и оси в приводе тормоза смазывают графитной смазкой.
Дисковый тормоз. Конструкция дисковых тормозов
По конструктивному исполнению дисковых тормозных механизмов их подразделяют на открытые и закрытые, одно- и многодисковые, а в зависимости от конструкции диска различают механизмы со сплошным и вентилируемым, металлическим и биметаллическим дисками.
Самый простой, сплошной диск применяется в тех случаях, когда возможно активное охлаждение дискового тормоза. Вентилируемый диск выполняется в виде крыльчатки-турбины.
По способу крепления скобы различают дисковые тормозные механизмы с фиксированной и плавающей скобой.
Рис. Дисковый тормоз:
а — общий вид; б — поперечный разрез; 1 — тормозной диск; 2 — кожух; 3 — тормозные колодки; 4 — суппорт; 5 — трубка; 6 — клапан удаления воздуха; 7 — рабочий тормозной цилиндр; 8 — подвижные поршни; 9 — уплотнительное кольцо; 10 — резиновая манжета; 11 — фрикционные накладки
Дисковый тормоз с фиксированной скобой обеспечивает большое приводное усилие и повышенную жесткость механизма. В дисковом тормозе вращающейся деталью является тормозной диск 7, изготовленный, как правило, из чугуна и жестко прикрепленный к ступице колеса. К диску с двух сторон прижимаются тормозные колодки 3 с фрикционными накладками 11, установленные в защитном суппорте 4, прикрепленном к неподвижной стойке подвески. Внутри суппорта в специальные пазы установлены цилиндры 7 с поршнями, прижимающие тормозные колодки к диску в момент торможения. Под действием сил трения вращение диска прекращается, колеса автомобиля останавливаются. Снаружи тормозной диск закрыт диском колеса, а изнутри — защитным штампованным кожухом 2.
Дисковые тормоза устанавливают на некоторых моделях грузовых автомобилей на передних колесах. Для управления такими тормозами применяется в основном гидравлический привод. Тормозная жидкость подается в полость тормозного цилиндра по трубкам от главного тормозного цилиндра. Для соединения тормозных цилиндров, расположенных по обе стороны диска, и выравнивания давления тормозной жидкости служит трубка 5. Тормозные колодки перемещаются в осевом направлении на специальных пальцах, служащих направляющими.
Дисковые тормоза, работающие в масле, широко используются в трансмиссиях современных гусеничных машин.
Вопросы по теме
[dwqa-list-questions tag=»tormoznye-diski»]Барабанный тормоз автомобиля
Барабанные тормоза колодочного типа, широко применяемые в рабочей и стояночной тормозных системах автомобиля, отличают надежность, простота и легкость регулировочных работ в процессе эксплуатации.
Рис. Колесный барабанный тормоз:
1 — колпачки; 2 — тормозной цилиндр; 3 — тормозной щит; 4 — стяжная пружина; 5, 8 — тормозные колодки; 6 — накладка; 7 — скоба; 9 — болт; 10 — шайба; 11 — пружина эксцентрика; 12 — регулировочный эксцентрик; 13 — пластина эксцентрика опорного пальца; 14 — эксцентрики опорных пальцев; 15 — опорные пальцы; 16 — гайка; 17 — опорный диск
Колесный барабанный тормоз состоит из неподвижной части — стального штампованного опорного диска 17, связанного с балкой моста автомобиля. На диске установлены тормозные колодки 5 и 8, к которым прикреплены фрикционные накладки б. Колодки изготавливают из стали или чугуна, а накладки — из специального фрикционного материала. Заклепки выполняют из меди, латуни или алюминия, т.е. из мягкого материала, чтобы при изнашивании накладок и прижатии их к поверхности тормозного барабана не было повреждений поверхности трения. Иногда используют пустотелые латунные заклепки, чтобы обеспечить удаление через их отверстия продуктов износа и песка с поверхностей трения, а также уменьшить износ тормозного барабана.
Тормозные колодки крепятся к диску на опорных пальцах 15 с зафиксированными на них эксцентриками 14 (эксцентриковыми шайбами), служащими для ремонтной регулировки зазоров между тормозными колодками и барабаном. При регулировке изменяется положение опор колодок. Положение опорных пальцев фиксируется гайками 16. Для эксплуатационной регулировки излишних зазоров, появляющихся между тормозным барабаном и колодками, предназначены регулировочные эксцентрики 72, установленные на болтах 9 в опорном диске и упирающиеся в среднюю часть каждой колодки. Для фиксации колодок в осевом направлении используются П-образные направляющие скобы 7. При неработающем тормозе колодки стянуты пружиной 4.
Верхние концы колодок упираются в разжимной кулак (например, у автомобилей ЗИЛ, КамАЗ) или поршни гидравлического разжимного устройства (например, у автомобилей ГАЗ, «Урал» и др.). У автомобилей марки ЗИЛ разжимной кулак приводится в движение при помощи червячной передачи, служащей для регулировки тормоза. При повороте червяка 5 червячная шестерня 3, закрепленная на валике разжимного кулака, поворачивается. Регулировку проводят при неподвижном корпусе 6 привода, кулак поворачивает колодки на некоторый угол, обеспечивая нужный зазор. При торможении шток пневмокамеры, связанный с рычагом через втулку 7, поворачивает червячную передачу вместе с рычагом.
Рис. Регулировочное устройство червячного типа:
1 — крышка; 2 — заклепка; 3 — червячная шестерня; 4 — заглушка; 5 — червяк; 6 — корпус; 7 — втулка; 8 — стопорный болт фиксатора; 9 — пружина; 10 — шарик; 11 — ось червяка; 12 — масленка
Общие сведения о тормозных системах транспортных средств
Тормозная система предназначена для снижения скорости движения ТС с желаемой интенсивностью вплоть до его полной остановки или удержания на месте при стоянке.
Государственным стандартом установлено наличие нескольких тормозных систем на ТС:
- рабочей, используемой для снижения скорости движущегося ТС вплоть до полной остановки
- стояночной, служащей для удержания ТС на месте при стоянке (например, на уклоне)
- запасной, приводимой в действие при выходе из строя рабочей тормозной системы
Кроме этого устанавливают вспомогательную тормозную систему, применяемую при длительном торможении, например при торможении на затяжном пологом спуске в горных районах. Для этих целей используются так называемые тормоза-замедлители, которыми оборудованы автомобили большой грузоподъемности (КрАЗ, КамАЗ, МАЗ и др.)- Некоторые зарубежные автомобили имеют гидрозамедлители, развивающие тормозную мощность до 700 кВт. Их устанавливают в трансмиссии автомобилей большой грузоподъемности, как правило, в задней части КП. Гидрозамедлители работают по принципу преобразования энергии.
У автопрездов имеется тормозная система прицепа (или полуприцепа), служащая для снижения скорости прицепного (прицепных) звена (звеньев) и автоматического торможения прицепа при обрыве сцепки с тягачом. Управление тормозной системой прицепа осуществляется от рабочей тормозной системы тягача.
Торможение любых ТС обеспечивается созданием искусственного сопротивления вращению колес автомобиля или ведущих колес (звездочек) гусеничных машин. Тормозная система состоит из тормозных механизмов, непосредственно осуществляющих торможение колес или одного из валов трансмиссии, и их привода. Об эффективности действия тормозных систем судят по тормозному пути ТС от начала работы тормозной системы до полной остановки машины.
По конструкции вращающихся деталей тормозных механизмов колесных ТС различают барабанные и дисковые тормоза, а по месту установки — колесные и трансмиссионные.
На автомобилях обычно применяются барабанные тормоза колодочного типа, а на гусеничных машинах — в основном ленточного типа. На любых ТС широко используются и дисковые тормоза.
Тормозные приводы по виду рабочего тела, применяемого для управления тормозными механизмами, подразделяют на:
- пневматические
- гидравлические
- комбинированные
Для стояночных тормозов используются механические приводы.
Тормозная сила
Сумма тормозных сил на заторможенных колесах обеспечивает сопротивление торможения.
В отличие от естественных сопротивлений (сила сопротивления качению или скатывающая сила) сопротивление торможения может регулироваться от нуля до максимального значения, соответствующего экстренному торможению.
Если тормозящее колесо не проскальзывает по поверхности дороги, то кинетическая энергия автомобиля переходит в работу трения тормозного механизма и частично в работу сил естественных сопротивлений. При интенсивном торможении колесо может быть заблокировано тормозным механизмом. В этом случае оно скользит по дороге юзом и работа трением происходит между шиной и опорной поверхностью.
По мере увеличения интенсивности торможения растут затраты энергии на проскальзывание шин. Вследствие этого увеличивается их износ. Особенно велик износ шин при блокировке колес на дорогах с твердым покрытием и при высоких скоростях скольжения.
Торможение с блокировкой колес нежелательно и по условиям безопасности движения:
- Во-первых, на заблокированном колесе тормозная сила значительно меньше, чем при торможении на грани блокировки.
- Во-вторых, при скольжении шин по дороге автомобиль теряет управляемость и устойчивость.
Предельное значение тормозной силы определяется коэффициентом сцепления колеса с дорогой:
Pторmах = Фx*Rz
Для всех колес двухосного автомобиля:
Рторmах = Pтop1 + Ртор2 = Фх*(Rz1 + Rz2) = Фx*Rz
где Ртор1 и Ртор2 — тормозные силы на колесах передней и задней оси автомобиля соответственно.
Безопасность движения и тормозной момент
Серьезной проблемой является обеспечение безопасности эксплуатации автотранспортных средств. Автомобиль остается самым опасным транспортным средством, так как, имея массу от 1 до 50 т, он может двигаться со скоростью до 200 км/ч, удерживаясь на дороге только за счет трения колес о ее поверхность. Кинетическая энергия движущегося автомобиля опасна для окружающих.
Единственный способ справиться в критической ситуации с огромной энергией автомобиля — это своевременно снизить его скорость, т. е. притормозить. Торможение — одна из основных фаз движения любых транспортных средств, которое неоднократно повторяется в процессе работы и практически всегда завершает этот процесс.
Торможение может быть рабочее, аварийное, стояночное, а также служебное и экстренное. Экстренное и служебное торможения отличаются друг от друга интенсивностью, т. е. величиной замедления автомобиля. Экстренные торможения выполняются с максимальной интенсивностью и составляют 5—10% общего числа торможений. Служебные торможения применяют для остановки автомобиля в заранее намеченном месте или для плавного уменьшения его скорости. Замедление автомобиля при служебном торможении в 2—3 раза меньше, чем при экстренном.
Для интенсивного поглощения кинетической энергии движущегося автомобиля используют тормозные механизмы, которые создают на колесах искусственное сопротивление движению. При этом на ступицы колес автомобиля действуют тормозные моменты Мтор а между колесом и дорогой возникают касательные реакции дороги (тормозные силы Ртор) направленные навстречу движения.
Величина тормозного момента Мтор, создаваемого тормозным механизмом, зависит от его конструкции и давления в тормозном приводе. Для наиболее распространенных типов привода — гидравлического и пневматического — сила нажатия на тормозную колодку прямо пропорциональна давлению в приводе при торможении. Тормозной момент может быть определен по формуле
Mтоp = Vт*Pо
где Vт — коэффициент пропорциональности; Ро — давление в тормозном приводе.
Коэффициент от зависит от многих факторов (температуры, наличия воды и т. д.) и может изменяться в широких пределах.
Схема пневматической тормозной системы
Рис. Схема пневматической тормозной системы: 1 — тормозная колодка; 2 — оттяжная пружина колодок; 3 — разжимной кулак; 4 — рычаг-корпус регулировочного механизма; 5 и 6 — нагнетательный и впускной клапаны; 7 — шланг подачи очищенного воздуха; 8 — плунжер; 9 — регулятор давления; 10 и 11 — шкалы давления воздуха соответственно в тормозных камерах и воздушных баллонах; 12 — предохранительный клапан; 13 — кран отбора сжатого воздуха; 14 — кран выпуска конденсата из воздушного баллона; 15 — тяга ножного привода тормозов; 16 — рычаг ручного привода тормозов; 17 и 20 — диафрагмы секции привода тормозов прицепа и автомобиля; 18 и 19 — выпускной (слева) и впускной клапаны секций тормозов прицепа и автомобиля; 21 — рычаг включения привода тормозов автомобиля; 22 — тормозной барабан; 23 — коромысло включения привода тормозов прицепа; 24 — шток; 25 — педаль рабочего тормоза; 26 — рычаг стояночного тормоза; 27— вилка регулировочная; 28— возвратная пружина педали; 29 — регулировочный червяк; I — компрессор; II — манометр; III — тормозной механизм; IV — воздушный баллон; V — соединительная головка; VI — разобщительный кран; VII — тормозная камера; VIII — тормозной кран
Схема гидравлической тормозной системы
Рис. Схема гидравлической тормозной системы: 1 — впускной трубопровод двигателя; 2 — запорный клапан; 3 и 6 — вакуумные баллоны соответственно переднего и заднего контуров; 4 — сигнализаторы недостаточной величины вакуума; 5 и 10 — гидровакуумные усилители соответственно переднего и заднего контуров; 7— тормозной механизм заднего колеса; 8 — картер заднего моста; 9 — регулятор давления; 11 — воздушный фильтр; 12 — пополнительный бачок; 13 — главный тормозной цилиндр; 14 — тормозной механизм переднего колеса; 15 — регулировочный эксцентрик; 16 — опорные оси; 17 — опорный диск; 18 — рабочий тормозной цилиндр; 19 — оттяжная пружина; 20 — эксцентриковая шайба; 21 — накладка колодки; 22 — направляющие скобы; 23 — перепускной клапан; 24 — подводящий шланг; 25 — резиновый шланг